463 research outputs found

    Singularities of Nonlinear Elliptic Systems

    Full text link
    Through Morrey's spaces (plus Zorko's spaces) and their potentials/capacities as well as Hausdorff contents/dimensions, this paper estimates the singular sets of nonlinear elliptic systems of the even-ordered Meyers-Elcrat type and a class of quadratic functionals inducing harmonic maps.Comment: 18 pages Communications in Partial Differential Equation

    Gauge theory of Faddeev-Skyrme functionals

    Full text link
    We study geometric variational problems for a class of nonlinear sigma-models in quantum field theory. Mathematically, one needs to minimize an energy functional on homotopy classes of maps from closed 3-manifolds into compact homogeneous spaces G/H. The minimizers are known as Hopfions and exhibit localized knot-like structure. Our main results include proving existence of Hopfions as finite energy Sobolev maps in each (generalized) homotopy class when the target space is a symmetric space. For more general spaces we obtain a weaker result on existence of minimizers in each 2-homotopy class. Our approach is based on representing maps into G/H by equivalence classes of flat connections. The equivalence is given by gauge symmetry on pullbacks of G-->G/H bundles. We work out a gauge calculus for connections under this symmetry, and use it to eliminate non-compactness from the minimization problem by fixing the gauge.Comment: 34 pages, no figure

    The mixed problem for the Laplacian in Lipschitz domains

    Full text link
    We consider the mixed boundary value problem or Zaremba's problem for the Laplacian in a bounded Lipschitz domain in R^n. We specify Dirichlet data on part of the boundary and Neumann data on the remainder of the boundary. We assume that the boundary between the sets where we specify Dirichlet and Neumann data is a Lipschitz surface. We require that the Neumann data is in L^p and the Dirichlet data is in the Sobolev space of functions having one derivative in L^p for some p near 1. Under these conditions, there is a unique solution to the mixed problem with the non-tangential maximal function of the gradient of the solution in L^p of the boundary. We also obtain results with data from Hardy spaces when p=1.Comment: Version 5 includes a correction to one step of the main proof. Since the paper appeared long ago, this submission includes the complete paper, followed by a short section that gives the correction to one step in the proo

    Hamiltonians for curves

    Full text link
    We examine the equilibrium conditions of a curve in space when a local energy penalty is associated with its extrinsic geometrical state characterized by its curvature and torsion. To do this we tailor the theory of deformations to the Frenet-Serret frame of the curve. The Euler-Lagrange equations describing equilibrium are obtained; Noether's theorem is exploited to identify the constants of integration of these equations as the Casimirs of the euclidean group in three dimensions. While this system appears not to be integrable in general, it {\it is} in various limits of interest. Let the energy density be given as some function of the curvature and torsion, f(Îş,Ď„)f(\kappa,\tau). If ff is a linear function of either of its arguments but otherwise arbitrary, we claim that the first integral associated with rotational invariance permits the torsion Ď„\tau to be expressed as the solution of an algebraic equation in terms of the bending curvature, Îş\kappa. The first integral associated with translational invariance can then be cast as a quadrature for Îş\kappa or for Ď„\tau.Comment: 17 page

    Frenet-Serret dynamics

    Get PDF
    We consider the motion of a particle described by an action that is a functional of the Frenet-Serret [FS] curvatures associated with the embedding of its worldline in Minkowski space. We develop a theory of deformations tailored to the FS frame. Both the Euler-Lagrange equations and the physical invariants of the motion associated with the Poincar\'e symmetry of Minkowski space, the mass and the spin of the particle, are expressed in a simple way in terms of these curvatures. The simplest non-trivial model of this form, with the lagrangian depending on the first FS (or geodesic) curvature, is integrable. We show how this integrability can be deduced from the Poincar\'e invariants of the motion. We go on to explore the structure of these invariants in higher-order models. In particular, the integrability of the model described by a lagrangian that is a function of the second FS curvature (or torsion) is established in a three dimensional ambient spacetime.Comment: 20 pages, no figures - replaced with version to appear in Class. Quant. Grav. - minor changes, added Conclusions sectio

    The Navier wall law at a boundary with random roughness

    Full text link
    We consider the Navier-Stokes equation in a domain with irregular boundaries. The irregularity is modeled by a spatially homogeneous random process, with typical size \eps \ll 1. In a parent paper, we derived a homogenized boundary condition of Navier type as \eps \to 0. We show here that for a large class of boundaries, this Navier condition provides a O(\eps^{3/2} |\ln \eps|^{1/2}) approximation in L2L^2, instead of O(\eps^{3/2}) for periodic irregularities. Our result relies on the study of an auxiliary boundary layer system. Decay properties of this boundary layer are deduced from a central limit theorem for dependent variables

    On the Geometry and Entropy of Non-Hamiltonian Phase Space

    Full text link
    We analyze the equilibrium statistical mechanics of canonical, non-canonical and non-Hamiltonian equations of motion by throwing light into the peculiar geometric structure of phase space. Some fundamental issues regarding time translation and phase space measure are clarified. In particular, we emphasize that a phase space measure should be defined by means of the Jacobian of the transformation between different types of coordinates since such a determinant is different from zero in the non-canonical case even if the phase space compressibility is null. Instead, the Jacobian determinant associated with phase space flows is unity whenever non-canonical coordinates lead to a vanishing compressibility, so that its use in order to define a measure may not be always correct. To better illustrate this point, we derive a mathematical condition for defining non-Hamiltonian phase space flows with zero compressibility. The Jacobian determinant associated with time evolution in phase space is altogether useful for analyzing time translation invariance. The proper definition of a phase space measure is particularly important when defining the entropy functional in the canonical, non-canonical, and non-Hamiltonian cases. We show how the use of relative entropies can circumvent some subtle problems that are encountered when dealing with continuous probability distributions and phase space measures. Finally, a maximum (relative) entropy principle is formulated for non-canonical and non-Hamiltonian phase space flows.Comment: revised introductio

    Convergence of Ginzburg-Landau functionals in 3-d superconductivity

    Full text link
    In this paper we consider the asymptotic behavior of the Ginzburg- Landau model for superconductivity in 3-d, in various energy regimes. We rigorously derive, through an analysis via {\Gamma}-convergence, a reduced model for the vortex density, and we deduce a curvature equation for the vortex lines. In a companion paper, we describe further applications to superconductivity and superfluidity, such as general expressions for the first critical magnetic field H_{c1}, and the critical angular velocity of rotating Bose-Einstein condensates.Comment: 45 page
    • …
    corecore