11 research outputs found

    A retroesophageal right subclavian artery originating from the left aortic arch - a case report and review of the literature

    Get PDF
    The retroesophageal right subclavian artery is an anatomical abnormality encountered by anatomists and pathologists and recently interventional cardiologists and thoracic surgeons have also come across this phenomenon. We report a case of a retroesophageal right subclavian artery arising from a normally located left aortic arch in a young male autopsied in the Department of Forensic Service of Warsaw Medical University. In addition to the aforementioned anomaly, the presence of a right non-recurrent inferior laryngeal nerve was noticed. The possible embryonic development of these branching patterns and their clinical significance is discussed

    Pediatric Sarcomas: The Next Generation of Molecular Studies

    No full text
    Pediatric sarcomas constitute one of the largest groups of childhood cancers, following hematopoietic, neural, and renal lesions. Partly because of their diversity, they continue to offer challenges in diagnosis and treatment. In spite of the diagnostic, nosologic, and therapeutic gains made with genetic technology, newer means for investigation are needed. This article reviews emerging technology being used to study human neoplasia and how these methods might be applicable to pediatric sarcomas. Methods reviewed include single cell RNA sequencing (scRNAseq), spatial multi-omics, high-throughput functional genomics, and clustered regularly interspersed short palindromic sequence-Cas9 (CRISPR-Cas9) technology. In spite of these advances, the field continues to be challenged by a dearth of properly annotated materials, particularly from recurrences and metastases and pre- and post-treatment samples

    Robotic RNA extraction for SARS-CoV-2 surveillance using saliva samples.

    No full text
    Saliva is an attractive specimen type for asymptomatic surveillance of COVID-19 in large populations due to its ease of collection and its demonstrated utility for detecting RNA from SARS-CoV-2. Multiple saliva-based viral detection protocols use a direct-to-RT-qPCR approach that eliminates nucleic acid extraction but can reduce viral RNA detection sensitivity. To improve test sensitivity while maintaining speed, we developed a robotic nucleic acid extraction method for detecting SARS-CoV-2 RNA in saliva samples with high throughput. Using this assay, the Free Asymptomatic Saliva Testing (IGI FAST) research study on the UC Berkeley campus conducted 11,971 tests on supervised self-collected saliva samples and identified rare positive specimens containing SARS-CoV-2 RNA during a time of low infection prevalence. In an attempt to increase testing capacity, we further adapted our robotic extraction assay to process pooled saliva samples. We also benchmarked our assay against nasopharyngeal swab specimens and found saliva methods require further optimization to match this gold standard. Finally, we designed and validated a RT-qPCR test suitable for saliva self-collection. These results establish a robotic extraction-based procedure for rapid PCR-based saliva testing that is suitable for samples from both symptomatic and asymptomatic individuals

    LuNER: Multiplexed SARS-CoV-2 detection in clinical swab and wastewater samples

    No full text
    Clinical and surveillance testing for the SARS-CoV-2 virus relies overwhelmingly on RT-qPCR-based diagnostics, yet several popular assays require 2-3 separate reactions or rely on detection of a single viral target, which adds significant time, cost, and risk of false-negative results. Furthermore, multiplexed RT-qPCR tests that detect at least two SARS-CoV-2 genes in a single reaction are typically not affordable for large scale clinical surveillance or adaptable to multiple PCR machines and plate layouts. We developed a RT-qPCR assay using the Luna Probe Universal One-Step RT-qPCR master mix with publicly available primers and probes to detect SARS-CoV-2 N gene, E gene, and human RNase P (LuNER) to address these shortcomings and meet the testing demands of a university campus and the local community. This cost-effective test is compatible with BioRad or Applied Biosystems qPCR machines, in 96 and 384-well formats, with or without sample pooling, and has a detection sensitivity suitable for both clinical reporting and wastewater surveillance efforts
    corecore