122 research outputs found

    Ergosterol reduction impairs mitochondrial DNA maintenance in S. cerevisiae

    Get PDF
    Sterols are essential lipids, involved in many biological processes. In Saccharomyces cerevisiae, the enzymes of the ergosterol biosynthetic pathway (Erg proteins) are localized in different cellular compartments. With the aim of studying organelle interactions, we discovered that Erg27p resides mainly in Lipid Droplets (LDs) in respiratory competent cells, while in absence of respiration, is found mostly in the ER. The results presented in this paper demonstrate an interplay between the mitochondrial respiration and ergosterol production: on the one hand, rho° cells show lower ergosterol content when compared with wild type respiratory competent cells, on the other hand, the ergosterol biosynthetic pathway influences the mitochondrial status, since treatment with ketoconazole, which blocks the ergosterol pathway, or the absence of the ERG27 gene, induced rho° production in S. cerevisiae. The loss of mitochondrial DNA in the ∆erg27 strain is fully suppressed by exogenous addition of ergosterol. These data suggest the notion that ergosterol is essential for maintaining the mitochondrial DNA attached to the inner mitochondrial membrane

    Yeast oxidosqualene cyclase (Erg7p) is a major component of lipid particles.

    Get PDF
    Oxidosqualene cyclase of the yeast encoded by the ERG7 gene converts oxidosqualene to lanosterol, the first cyclic component of sterol biosynthesis. In a previous study (Athenstaedt, K., Zweytick, D., Jandrositz, A, Kohlwein, S. D., and Daum, G. (1999) J. Bacteriol. 181, 6441–6448), Erg7p was identified as a component of yeast lipid particles. Here, we present evidence that Erg7p is almost exclusively associated with this compartment as shown by analysis of enzymatic activity, Western blot analysis, and in vivo localization of Erg7p-GFP. Occurrence of oxidosqualene cyclase in other organelles including the endoplasmic reticulum is negligible. In an erg7 deletion strain or in wild-type cells treated with an inhibitor of oxidosqualene cyclase, the substrate of Erg7p, oxidosqualene, accumulated mostly in lipid particles. Storage in lipid particles of this intermediate produced in excess may provide a possibility to exclude this membrane-perturbing component from other organelles. Thus, our data provide evidence that lipid particles are not only a depot for neutral lipids, but also participate in coordinate sterol metabolism and trafficking and serve as a storage site for compounds that may negatively affect membrane integrity

    The cholesterol biosynthesis enzyme oxidosqualene cyclase is a new target to impair tumour angiogenesis and metastasis dissemination

    Get PDF
    Aberrant cholesterol homeostasis and biosynthesis has been observed in different tumour types. This paper investigates the role of the post-squalenic enzyme of cholesterol biosynthesis, oxidosqualene cyclase (OSC), in regulating tumour angiogenesis and metastasis dissemination in mouse models of cancer. We showed that Ro 48-8071, a selective inhibitor of OSC, reduced vascular density and increased pericyte coverage, with a consequent inhibition of tumour growth in a spontaneous mouse model of pancreatic tumour (RIP-Tag2) and two metastatic mouse models of human colon carcinoma (HCT116) and pancreatic adenocarcinoma (HPAF-II). Remarkably, the inhibition of OSC hampered metastasis formation in HCT116 and HPAF-II models. Ro 48-8071 induced tumour vessel normalization and enhanced the anti-tumoral and anti-metastatic effects of 5-fluorouracil (5-FU) in HCT116 mice. Ro 48-8071 exerted a strong anti-angiogenic activity by impairing endothelial cell adhesion and migration, and by blocking vessel formation in angiogenesis assays. OSC inhibition specifically interfered with the PI3K pathway. According to in vitro results, Ro 48-8071 specifically inhibited Akt phosphorylation in both cancer cells and tumour vasculature in all treated models. Thus, our results unveil a crucial role of OSC in the regulation of cancer progression and tumour angiogenesis, and indicate Ro 48-8071 as a potential novel anti-angiogenic and anti-metastatic drug
    • …
    corecore