7 research outputs found

    Compression of volume-surface integral equation matrices via Tucker decomposition for magnetic resonance applications

    Full text link
    In this work, we propose a method for the compression of the coupling matrix in volume\hyp surface integral equation (VSIE) formulations. VSIE methods are used for electromagnetic analysis in magnetic resonance imaging (MRI) applications, for which the coupling matrix models the interactions between the coil and the body. We showed that these effects can be represented as independent interactions between remote elements in 3D tensor formats, and subsequently decomposed with the Tucker model. Our method can work in tandem with the adaptive cross approximation technique to provide fast solutions of VSIE problems. We demonstrated that our compression approaches can enable the use of VSIE matrices of prohibitive memory requirements, by allowing the effective use of modern graphical processing units (GPUs) to accelerate the arising matrix\hyp vector products. This is critical to enable numerical MRI simulations at clinical voxel resolutions in a feasible computation time. In this paper, we demonstrate that the VSIE matrix\hyp vector products needed to calculate the electromagnetic field produced by an MRI coil inside a numerical body model with 11 mm3^3 voxel resolution, could be performed in ∼33\sim 33 seconds in a GPU, after compressing the associated coupling matrix from ∼80\sim 80 TB to ∼43\sim 43 MB.Comment: 13 pages, 11 figure

    Accelerated MRI reconstructions via variational network and feature domain learning

    No full text
    Abstract We introduce three architecture modifications to enhance the performance of the end-to-end (E2E) variational network (VarNet) for undersampled MRI reconstructions. We first implemented the Feature VarNet, which propagates information throughout the cascades of the network in an N-channel feature-space instead of a 2-channel feature-space. Then, we add an attention layer that utilizes the spatial locations of Cartesian undersampling artifacts to further improve performance. Lastly, we combined the Feature and E2E VarNets into the Feature-Image (FI) VarNet, to facilitate cross-domain learning and boost accuracy. Reconstructions were evaluated on the fastMRI dataset using standard metrics and clinical scoring by three neuroradiologists. Feature and FI VarNets outperformed the E2E VarNet for 4 ×\times × , 5 ×\times × and 8 ×\times × Cartesian undersampling in all studied metrics. FI VarNet secured second place in the public fastMRI leaderboard for 4 ×\times × Cartesian undersampling, outperforming all open-source models in the leaderboard. Radiologists rated FI VarNet brain reconstructions with higher quality and sharpness than the E2E VarNet reconstructions. FI VarNet excelled in preserving anatomical details, including blood vessels, whereas E2E VarNet discarded or blurred them in some cases. The proposed FI VarNet enhances the reconstruction quality of undersampled MRI and could enable clinically acceptable reconstructions at higher acceleration factors than currently possible

    Noninvasive estimation of electrical properties from magnetic resonance measurements via global Maxwell tomography and match regularization

    No full text
    Objective: In this paper, we introduce global Maxwell tomography (GMT), a novel volumetric technique that estimates electric conductivity and permittivity by solving an inverse scattering problem based on magnetic resonance measurements. Methods: GMT relies on a fast volume integral equation solver, MARIE, for the forward path, and a novel regularization method, match regularization, designed specifically for electrical property estimation from noisy measurements. We performed simulations with three different tissue-mimicking numerical phantoms of different complexity, using synthetic transmit sensitivity maps with realistic noise levels as the measurements. We performed an experiment at 7 T using an eight-channel coil and a uniform phantom. Results: We showed that GMT could estimate relative permittivity and conductivity from noisy magnetic resonance measurements with an average error as low as 0.3% and 0.2% respectively, over the entire volume of the numerical phantom. Voxel resolution did not affect GMT performance and is currently limited only by the memory of the graphics processing unit. In the experiment, GMT could estimate electrical properties within 5% of the values measured with a dielectric probe. Conclusion: This work demonstrated the feasibility of GMT with match regularization, suggesting that it could be effective for accurate in vivo electrical property estimation. GMT does not rely on any symmetry assumption for the electromagnetic field, and can be generalized to estimate also the spin magnetization, at the expense of increased computational complexity. Significance: GMT could provide insight into the distribution of electromagnetic fields inside the body, which represents one of the key ongoing challenges for various diagnostic and therapeutic applications
    corecore