6 research outputs found

    Frataxin mRNA isoforms in FRDA patients and normal subjects: effect of tocotrienol supplementation.

    Get PDF
    Friedreich's ataxia (FRDA) is caused by deficient expression of the mitochondrial protein frataxin involved in the formation of iron-sulphur complexes, and by consequent oxidative stress. We analysed low-dose tocotrienol supplementation effects on the expression of the three splice variant isoforms (FXN-1, FXN-2 and FXN-3) in mononuclear blood cells of FRDA patients and healthy subjects. In FRDA patients, tocotrienol leads to a specific and significant increase of FXN-3 expression, while not affecting FXN-1 and FXN-2 expression. Since no structural and functional details were available for FNX-2 and FXN-3, 3D-models were built. FXN-1, the canonical isoform, was then docked on the human iron-sulphur complex and functional interactions were computed; when FXN-1 was replaced by FXN-2 or FNX-3, we found that the interactions were maintained, thus suggesting a possible biological role for both isoforms in human cells. Finally, in order to evaluate whether tocotrienol enhancement of FXN-3 was mediated by an increase in peroxisome proliferator-activated receptor-\uf067 (PPARG), PPARG expression was evaluated. At low dose of tocotrienol, the increase of FXN-3 expression appeared to be independent of PPARG expression. Our data show that it is possible to modulate the mRNA expression of the minor frataxin isoforms, and that they may have a functional role

    Role of the C-terminus of Pleurotus eryngii Ery4 laccase in determining enzyme structure, catalytic properties and stability.

    No full text
    The ERY4 laccase gene of Pleurotus eryngii is not biologically active when expressed in yeast. To explain this finding, we analysed the role of the C-terminus of Ery4 protein by producing a number of its different mutant variants. Two different categories of ERY4 mutant genes were produced and expressed in yeast: (i) mutants carrying C-terminal deletions and (ii) mutants carrying different site-specific mutations at their C-terminus. Investigation of the catalytic properties of the recombinant enzymes indicated that each novel variant acquired different affinities and catalytic activity for various substrates. Our results highlight that C-terminal processing is fundamental for Ery4 laccase enzymatic activities allowing substrate accessibility to the enzyme catalytic core. Apparently, the last 18 amino acids in the C-terminal end of the Ery4 laccase play a critical role in enzyme activity, stability and kinetic and, in particular biochemical and structural data indicate that the K532 residue is fundamental for enzyme activation. These studies shed light on the structure/function relationships of fungal laccases and will enhance the development of biotechnological strategies for the industrial exploitation of these enzymes
    corecore