22 research outputs found

    Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm

    Get PDF
    In this paper, we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties of the robot's body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators and the compliance of its actuated joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate control rules

    Evolution of Grasping Behaviour in Anthropomorphic Robotic Arms with Embodied Neural Controllers

    Get PDF
    The works reported in this thesis focus upon synthesising neural controllers for anthropomorphic robots that are able to manipulate objects through an automatic design process based on artificial evolution. The use of Evolutionary Robotics makes it possible to reduce the characteristics and parameters specified by the designer to a minimum, and the robot’s skills evolve as it interacts with the environment. The primary objective of these experiments is to investigate whether neural controllers that are regulating the state of the motors on the basis of the current and previously experienced sensors (i.e. without relying on an inverse model) can enable the robots to solve such complex tasks. Another objective of these experiments is to investigate whether the Evolutionary Robotics approach can be successfully applied to scenarios that are significantly more complex than those to which it is typically applied (in terms of the complexity of the robot’s morphology, the size of the neural controller, and the complexity of the task). The obtained results indicate that skills such as reaching, grasping, and discriminating among objects can be accomplished without the need to learn precise inverse internal models of the arm/hand structure. This would also support the hypothesis that the human central nervous system (cns) does necessarily have internal models of the limbs (not excluding the fact that it might possess such models for other purposes), but can act by shifting the equilibrium points/cycles of the underlying musculoskeletal system. Consequently, the resulting controllers of such fundamental skills would be less complex. Thus, the learning of more complex behaviours will be easier to design because the underlying controller of the arm/hand structure is less complex. Moreover, the obtained results also show how evolved robots exploit sensory-motor coordination in order to accomplish their tasks

    Evolution of Prehension Ability in an Anthropomorphic Neurorobotic Arm

    Get PDF
    In this paper we show how a simulated anthropomorphic robotic arm controlled by an artificial neural network can develop effective reaching and grasping behaviour through a trial and error process in which the free parameters encode the control rules which regulate the fine-grained interaction between the robot and the environment and variations of the free parameters are retained or discarded on the basis of their effects at the level of the global behaviour exhibited by the robot situated in the environment. The obtained results demonstrate how the proposed methodology allows the robot to produce effective behaviours thanks to its ability to exploit the morphological properties of the robot’s body (i.e. its anthropomorphic shape, the elastic properties of its muscle-like actuators, and the compliance of its actuated joints) and the properties which arise from the physical interaction between the robot and the environment mediated by appropriate control rules

    Active categorical perception in an evolved anthropomorphic robotic arm

    Get PDF
    Active perception refers to a theoretical approach to the study of perception grounded on the idea that perceiving is a way of acting, rather than a cognitive process whereby the brain constructs an internal representation of the world. The operational principles of active perception can be effectively tested by building robot-based models in which the relationship between perceptual categories and the body-environment interactions can be experimentally manipulated. In this pa-per, we study the mechanisms of tactile perception in a task in which a neuro-controlled anthropomorphic robotic arm, equipped with coarse-grained tactile sen-sors, is required to perceptually discriminate between spherical and ellipsoid ob-jects. The results of this work demonstrate that evolved continuous time non-linear neural controllers can bring forth strategies to allow the arm to effectively solve the discrimination task.

    Two Examples of Active Categorisation Processes Distributed Over Time

    Get PDF
    Active perception refers to a theoretical approach grounded on the idea that perception is an active process in which the actions performed by the agent play a constitutive role. In this paper we present two different scenarios in which we test active perception principles using an evolutionary robotics approach. In the first experiment, a robotic arm equipped with coarse-grained tactile sensors is required to perceptually categorize spherical and ellipsoid objects. In the second experiment, an active vision system has to distinguish between five different kinds of images of different sizes. In both situations the best individuals develop a close to optimal ability to discriminate different objects/images as well as an excellent ability to generalize their skills in new circumstances. Analyses of evolved behaviours show that agents are able to solve their tasks by actively selecting relevant information and by integrating these information over time

    Evolution of grasping behaviour in anthropomorphic robotic arms with embodied neural controllers

    No full text
    The works reported in this thesis focus upon synthesising neural controllers for anthropomorphic robots that are able to manipulate objects through an automatic design process based on artificial evolution. The use of Evolutionary Robotics makes it possible to reduce the characteristics and parameters specified by the designer to a minimum, and the robot’s skills evolve as it interacts with the environment. The primary objective of these experiments is to investigate whether neural controllers that are regulating the state of the motors on the basis of the current and previously experienced sensors (i.e. without relying on an inverse model) can enable the robots to solve such complex tasks. Another objective of these experiments is to investigate whether the Evolutionary Robotics approach can be successfully applied to scenarios that are significantly more complex than those to which it is typically applied (in terms of the complexity of the robot’s morphology, the size of the neural controller, and the complexity of the task). The obtained results indicate that skills such as reaching, grasping, and discriminating among objects can be accomplished without the need to learn precise inverse internal models of the arm/hand structure. This would also support the hypothesis that the human central nervous system (cns) does necessarily have internal models of the limbs (not excluding the fact that it might possess such models for other purposes), but can act by shifting the equilibrium points/cycles of the underlying musculoskeletal system. Consequently, the resulting controllers of such fundamental skills would be less complex. Thus, the learning of more complex behaviours will be easier to design because the underlying controller of the arm/hand structure is less complex. Moreover, the obtained results also show how evolved robots exploit sensory-motor coordination in order to accomplish their tasks.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore