30 research outputs found

    Identification by Site-directed Mutagenesis and Chemical Modification of Three Vicinal Cysteine Residues in Rat Mitochondrial Carnitine/Acylcarnitine Transporter *

    Get PDF
    The proximity of the Cys residues present in the mitochondrial rat carnitine/acylcarnitine carrier (CAC) primary structure was studied by using site-directed mutagenesis in combination with chemical modification. CAC mutants, in which one or more Cys residues had been replaced with Ser, were overexpressed in Escherichia coli and reconstituted into liposomes. The effect of SH oxidizing, cross-linking, and coordinating reagents was evaluated on the carnitine/carnitine exchange catalyzed by the recombinant reconstituted CAC proteins. All the tested reagents efficiently inhibited the wild-type CAC. The inhibitory effect of diamide, Cu(2+)-phenanthroline, or phenylarsine oxide was largely reduced or abolished by the double substitutions C136S/C155S, C58S/C136S, and C58S/C155S. The decrease in sensitivity to these reagents was much lower in double mutants in which Cys(23) was substituted with Cys(136) or Cys(155). No decrease in inhibition was found when Cys(89) and/or Cys(283) were replaced with Ser. Sb(3+), which coordinates three cysteines, inhibited only the Cys replacement mutants containing cysteines 58, 136, and 155 of the six native cysteines. In addition, the mutant C23S/C89S/C155S/C283S, in which double tandem fXa recognition sites were inserted in positions 65-72, i.e. between Cys(58) and Cys(136), was not cleaved into two fragments by fXa protease after treatment with diamide. These results are interpreted in light of the homology model of CAC based on the available x-ray structure of the ADP/ATP carrier. They indicate that Cys(58), Cys(136), and Cys(155) become close in the tertiary structure of the CAC during its catalytic cycle

    Relationships of Cysteine and Lysine residues with the substrate binding site of the mitochondrial ornithine/citrulline carrier: An inhibition kinetic approach combined with the analysis of the homology structural model

    Get PDF
    AbstractTo gain insights in the relationships of specific amino acid residues with the active site of the mitochondrial ornithine/citrulline carrier, we studied the effect of specific protein modifying reagents on the transport catalysed by the carrier reconstituted into liposomes. It was found that, besides the sulfhydryl reagents NEM, MTSEA, p-hydroxymercuribenzoate, diamide also the lysine reagents PLP, DIDS, SITS, the carboxyl reagents WRK, EDC and the arginine reagent methylglyoxal inhibited the carrier. NEM, MTSEA and PLP inhibited the ornithine/citrulline carrier with a completely competitive type of mechanism. A 1:1 interaction of NEM with the carrier molecule has been demonstrated. The results are in agreement with the localization of one sulfhydryl and at least one amino group in the substrate binding site. On the basis of the interferences between SH reagents and PLP in the transport inhibition, it has been deduced that the distance between the SH and the NH2 residues of the active site should be comparable to the distance between the γ-NH2 and COOH residues of the ornithine molecule. The structural model of the ornithine/citrulline carrier has been obtained by homology modelling using as template the ADP/ATP carrier structure. The combined analysis of the experimental data and the structural model allows to deduce that Cys-132 is located in the substrate binding site, flanked by at least one Lys residue

    Characterization of a Novel Mitochondrial Ascorbate Transporter From Rat Liver and Potato Mitochondria

    Get PDF
    The Mitochondrial Ascorbic Acid Transporter (MAT) from both rat liver and potato mitochondria has been reconstituted in proteoliposomes. The protein has a molecular mass in the range of 28–35 kDa and catalyzes saturable, temperature and pH dependent, unidirectional ascorbic acid transport. The transport activity is sodium independent and it is optimal at acidic pH values. It is stimulated by proton gradient, thus supporting that ascorbate is symported with H+. It is efficiently inhibited by the lysine reagent pyridoxal phosphate and it is not affected by inhibitors of other recognized plasma and mitochondrial membranes ascorbate transporters GLUT1(glucose transporter-1) or SVCT2 (sodium-dependent vitamin C transporter-2). Rat protein catalyzes a cooperative ascorbate transport, being involved two binding sites; the measured K0.5 is 1.5 mM. Taking into account the experimental results we propose that the reconstituted ascorbate transporter is not a GLUT or SVCT, since it shows different biochemical features. Data of potato transporter overlap the mammalian ones, except for the kinetic parameters non-experimentally measurable, thus supporting the MAT in plants fulfills the same transport role

    Exploiting Cysteine Residues of SLC Membrane Transporters as Targets for Drugs.

    Get PDF
    The observation that cysteine is the top gainer amino acid during evolution attracted the attention of scientists dealing with protein chemistry. The thiol group of cysteine, indeed, is a potential site for several types of reactions with variable specificity and strength. This feature proved to be promising also in the field of membrane transporters that represent boundary proteins fundamental for cell homeostasis. These proteins are classified, according to the driving force for transport, in primary or secondary active transporters. Another frequently used classification is nowadays based on phylogenesis. Two major groups are identified that take into account both criteria: the ABC and the SLC transporters, the second being much more numerous. The cellular localization of the transporters makes them very attractive for drug design. Moreover, the presence of at least one cysteine residue in all the annotated SLC transporters, so far, highlights the possibility of using the thiol (SH) residue for covalent drug targeting. Even if a delay exists in this research field due to the scarce knowledge of structure/function relationships, the setup of novel experimental tools for studying SLC proteins of plasma and organelle membranes opens an important perspective in pharmacology

    Effect of Copper on the Mitochondrial Carnitine/Acylcarnitine Carrier Via Interaction with Cys136 and Cys155. Possible Implications in Pathophysiology

    No full text
    The effect of copper on the mitochondrial carnitine/acylcarnitine carrier (CAC) was studied. Transport function was assayed as [3H]carnitine/carnitine antiport in proteoliposomes reconstituted with the native protein extracted from rat liver mitochondria or with the recombinant CAC over-expressed in E. coli. Cu2+ (as well as Cu+) strongly inhibited the native transporter. The inhibition was reversed by GSH (reduced glutathione) or by DTE (dithioerythritol). Dose-response analysis of the inhibition of the native protein was performed from which an IC50 of 1.6 µM for Cu2+ was derived. The mechanism of inhibition was studied by using the recombinant WT or Cys site-directed mutants of CAC. From the dose-response curve of the effect of Cu2+ on the recombinant protein, an IC50 of 0.28 µM was derived. Inhibition kinetics revealed a non-competitive type of inhibition by Cu2+. However, a substrate protection experiment indicated that the interaction of Cu2+ with the protein occurred in the vicinity of the substrate-binding site. Dose-response analysis on Cys mutants led to much higher IC50 values for the mutants C136S or C155S. The highest value was obtained for the C136/155S double mutant, indicating the involvement of both Cys residues in the interaction with Cu2+. Computational analysis performed on the WT CAC and on Cys mutants showed a pattern of the binding energy mostly overlapping the binding affinity derived from the dose-response analysis. All the data concur with bridging of Cu2+ with the two Cys residues, which blocks the conformational changes required for transport cycle

    The Mitochondrial Carnitine Acyl-carnitine Carrier (SLC25A20): Molecular Mechanisms of Transport, Role in Redox Sensing and Interaction with Drugs

    No full text
    The SLC25A20 transporter, also known as carnitine acyl-carnitine carrier (CAC), catalyzes the transport of short, medium and long carbon chain acyl-carnitines across the mitochondrial inner membrane in exchange for carnitine. The 30-year story of the protein responsible for this function started with its purification from rat liver mitochondria. Even though its 3D structure is not yet available, CAC is one of the most deeply characterized transport proteins of the inner mitochondrial membrane. Other than functional, kinetic and mechanistic data, post-translational modifications regulating the transport activity of CAC have been revealed. CAC interactions with drugs or xenobiotics relevant to human health and toxicology and the response of the carrier function to dietary compounds have been discovered. Exploiting combined approaches of site-directed mutagenesis with chemical targeting and bioinformatics, a large set of data on structure/function relationships have been obtained, giving novel information on the molecular mechanism of the transport catalyzed by this protein

    Site-directed mutagenesis of charged amino acids of the human mitochondrial carnitine/acylcarnitine carrier: Insight into the molecular mechanism of transport

    Get PDF
    AbstractThe structure/function relationships of charged residues of the human mitochondrial carnitine/acylcarnitine carrier, which are conserved in the carnitine/acylcarnitine carrier subfamily and exposed to the water-filled cavity of carnitine/acylcarnitine carrier in the c-state, have been investigated by site-directed mutagenesis. The mutants were expressed in Escherichia coli, purified and reconstituted in liposomes, and their transport activity was measured as 3H-carnitine/carnitine antiport. The mutants K35A, E132A, D179A and R275A were nearly inactive with transport activities between 5 and 10% of the wild-type carnitine/acylcarnitine carrier. R178A, K234A and D231A showed transport function of about 15% of the wild-type carnitine/acylcarnitine carrier. The substitutions of the other residues with alanine had little or no effect on the carnitine/acylcarnitine carrier activity. Marked changes in the kinetic parameters with three-fold higher Km and lower Vmax values with respect to the wild-type carnitine/acylcarnitine carrier were found when replacing Lys-35, Glu-132, Asp-179 and Arg-275 with alanine. Double mutants exhibited transport activities and kinetic parameters reflecting those of the single mutants; however, lack of D179A activity was partially rescued by the additional mutation R178A. The results provide evidence that Arg-275, Asp-179 and Arg-178, which protrude into the carrier's internal cavity at about the midpoint of the membrane, are the critical binding sites for carnitine. Furthermore, Lys-35 and Glu-132, which are very probably involved in the salt-bridge network located at the bottom of the cavity, play a major role in opening and closing the matrix gate
    corecore