14 research outputs found

    Structure and Thermal Stability of Two Estetrol Solvates

    No full text
    Two solvates of estetrol have been isolated and characterized by SCXRD and PXRD as well as by thermal analyses, morphology and spectroscopy. Estetrol monohydrate (Estetrol.H2O, S.G. P1, Z = 12) contains 12 molecules in its asymmetric unit with very subtle conformational differences with one another but reveals an intricate network made of intermolecular H-bonds established with the neighbour estetrol molecules and with crystallization water. Each molecule of estetrol methanol hemisolvate (Estetrol.0.5CH3OH, S.G. C2, Z = 4) establishes six O-H…O bonds with six different neighbours and additional H-bonds with methanol. In both structures, estetrol molecules are organized in a head-to-tail arrangement that favours the formation of O-H…O interactions. The increased thermal stability of Estetrol.0.5CH3OH crystals with respect to Estetrol.H2O can be correlated to the strengthened network of H-bonds

    Performance of wastewater treatment plants in emission of greenhouse gases

    No full text
    : The present work has estimated greenhouse gas emissions in aerobic and anaerobic Wastewater Treatment Plants in Southern Italy. Greenhouse gases emissions from each treatment unit were calculated based on emission factors related to Chemical Oxygen Demand removal for biogenic CO2 and CH4 assessment and on Nitrogen removal for N2O. N2O, biogenic CO2, and CH4 emissions vary for aerobic and anaerobic-based WWTPs respectively from 73 kgCO2eq/PE*y for anaerobic plants to 91 kgCO2eq/PE*y for aerobic plants. In aerobic and anaerobic digestion systems WWTPs the contributions to CO2eq total emissions from N2O, CH4, biogenic CO2, and fossil CO2 are 30 %-33 %, 20 %-29 %, 22 %-25 %, and 26 %-16 %, respectively. N2O emissions from biological processes were found the most contributing sources of greenhouse gases while in the physical processes higher contribution is indirect carbon dioxide related to energy consumption. Compensatory measures are reported to reduce greenhouse gases emissions

    Compensatory measures to reduce GHGs in wastewater treatment plants in Southern Italy

    No full text
    This study evaluates Greenhouse Gas (GHGs) emissions in 183 Wastewater Treatment Plants (WWTPs) located in the Apulia region in Southern Italy. All WWTPs examined treat municipal wastewater. GHGs from each treatment unit were estimated in the current situation and compared, for the same WWTPs, to those emitted after assuming structural compensatory measures to mitigate them. Total GHGs emissions in current estimation have been estimated equal to 83 kg CO2eq/PEâ‹…y and equal to 62 kg CO2eq/PEâ‹…y after upgrade. Some compensatory mea- sures have been also discussed to lower GHGs emitted: the recirculation of sludge thickened in treatment sec- ondary; reduction of biogas systems leakage, aerobic digester and thickener coverage and new system to recovery biogas from anaerobic digester generating energy. All upgrade systems considered result in electrical energy reduction and in significant GHGs emission reduction especially for anaerobic digestion based WWTPs

    Multi-Gram Scale Synthesis and Characterization of Mometasone Furoate EP Impurity C

    No full text
    Mometasone furoate is a synthetic corticosteroid used in the treatment of skin inflammatory conditions, hay fever and asthma. The industrial manufacturing routes to mometasone furoate are generally accompanied by the formation of numerous process impurities that need to be detected and quantified, as requested by regulatory authorities. The ready availability of such impurities in the required quantity and purity is therefore essential for toxicological studies, analytical method development and process validation. Herein, we report the multi-gram scale preparation of 21′-chloro-(16′α-methyl-3′,11′,20′-trioxo-pregna-1′,4′-dien-17′-yl)-furan-2-carboxylate (mometasone furoate EP impurity C), one of the known impurities of mometasone furoate. This study also includes the systematic investigation of the final acylation step, as well as the characterization of the difuroate enol ether intermediate and its conversion to the target impurity C

    Evaluation of greenhouse gas emissions from aerobic and anaerobic wastewater treatment plants in Southeast of Italy

    No full text
    An evaluation of the operative functioning data of 183 Wastewater Treatment Plants (WWTPs) in Apulia (Southeast of Italy) has been carried out aimed to assess their Green House Gases (GHGs) emissions and the level for which the use of anaerobic sludge treatment should be more convenient in terms of electricity consumption and of GHGs emissions. Out of the 183 studies WWTPs, 140 are practicing aerobic digestion of sludge, while the remaining 43 are practicing anaerobic digestion of sludge. WWTPs in Apulia are serving about 4,81 million PE (Population Equivalent), yielding approximately 600,000-ton equivalent CO2 per annum. The production of GHGs emissions has been estimated by evaluating the contribution of CO2 deriving from: a) electric energy consumption (fossil CO2), b) biogenic CO2, c) N2O and d) CH4 emissions. The present study investigates a number of technical measures for upgrading the existing WWTPs, so to reduce GHGs emissions through the amelioration of CH4 production and capture in the anaerobic step, and through reducing the production of biogenic N2O and CO2 emissions in the aerated basin. The methodology employees artificial intelligence-based control for upgrading the aerobic oxidation of the organic carbon and the nitrification-denitrification steps. As a result, GHGs emissions are expected to be reduced by approximately: 71% for CH4, 57% for N2O, 20% for biogenic CO2 and 15% for fossil derived CO2

    Assessing the Role of a Malonamide Linker in the Design of Potent Dual Inhibitors of Factor Xa and Cholinesterases

    No full text
    The rational discovery of new peptidomimetic inhibitors of the coagulation factor Xa (fXa) could help set more effective therapeutic options (to prevent atrial fibrillation). In this respect, we explored the conformational impact on the enzyme inhibition potency of the malonamide bridge, compared to the glycinamide one, as a linker connecting the P1 benzamidine anchoring moiety to the P4 aryl group of novel selective fXa inhibitors. We carried out structure-activity relationship (SAR) studies aimed at investigating Para- or meta-benzamidine as the P1 basic group as well as diversely decorated aryl moieties as P4 fragments. To this end, twenty-three malonamide derivatives were synthesized and tested as inhibitors of fXa and thrombin (thr); the molecular determinants behind potency and selectivity were also studied by employing molecular docking. The malonamide linker, compared to the glycinamide one, does significantly increase anti-fXa potency and selectivity. The meta-benzamidine (P1) derivatives bearing 2',4'-difluoro-biphenyl as the P4 moiety proved to be highly potent reversible fXa-selective inhibitors, achieving inhibition constants (K-i) in the low nanomolar range. The most active compounds were also tested against cholinesterase (ChE) isoforms (acetyl- or butyrylcholinesterase, AChE, and BChE), and some of them returned single-digit micromolar inhibition potency against AChE and/or BChE, both being drug targets for symptomatic treatment of mild-to-moderate Alzheimer's disease. Compounds 19h and 22b were selected as selective fXa inhibitors with potential as multimodal neuroprotective agents

    Copper phytoextraction using Phyllostachys pubescens

    No full text
    The Phyllostachys pubescens macrophyte, known also as Moso Bamboo, was evaluated in laboratory conditions for its potential to renovate copper-polluted soil. Pot experiments were conducted to determine Phyllostachys pubescens’ growth, tolerance and phytoextraction potential capacity to restore copper-contaminated soil in Mediterranean conditions. Data collected evidenced that the Phyllostachys pubescens evolution rate was 0.47 cm/day on average, with a 1.644 mm/d irrigation flow. Moso Bamboo tolerance was tested over a twelve-week irrigation period, while adding copper-polluted water. Copper removal from soil was 51.4% and the quantity of copper per gram of root/rhizome was equal to 1.18 mg Cu/g, while the amount of copper per gram of stem/leaves was 0.50 mg Cu/g, after 12 weeks. The conducted laboratory experiments show that environmental restoration using the phytoextraction technique, and using Phyllostachys pubescens, should be considered for the restoration of copper-contaminated soils

    Influence of climate change on wastewater treatment plants performances and energy costs in Apulia, south Italy

    No full text
    This paper studies the influence of temperature and of rainfall intensity and the effect of such variations on the treatment efficiencies and on the electrical consumptions in seven medium-large size Wastewater Treatment Plants (WWTPs) in Apulia in South Italy (Bari, Barletta, Brindisi, Lecce, Foggia, Andria and Taranto). It has been observed, in the considered WWTPs, a slight but clear increase of the incoming flow due to the increase in rainfall intensity, which results to an increase of the energy consumption per incoming volume. The impact of the climate change to the incoming flow, during the last five years (2016-2020), has been assessed indicating that an increase in rainfall intensity results to an increase of the WWTPs energy consumptions per wastewater treated volume. More specifically, for a specific WWTP (Lecce) it was found that the electrical consumption increases from 0.36 kw/m3 to 0.51 kw/m3 when the rainfall intensity was increased from 0.8 mm/min to 2.9 mm/min. Some adaption measures have been considered to upgrade the existing WWTP so to mitigate the energy increase and to limit the global effects of climate change

    How a β‑d‑Glucoside Side Chain Enhances Binding Affinity to Thrombin of Inhibitors Bearing 2‑Chlorothiophene as P1 Moiety: Crystallography, Fragment Deconstruction Study, and Evaluation of Antithrombotic Properties

    No full text
    The β-d-glucose-containing compound <b>3</b>, bearing 2-chlorothiophene and 1-isopropylpiperidine moieties as binders of the S1 and S4 pockets, respectively, proved to be potent competitive inhibitor of factor Xa (fXa, <i>K</i><sub>i</sub> = 0.090 nM) and thrombin (fIIa, <i>K</i><sub>i</sub> = 100 nM). The potency of <b>3</b> increases, over the parent compound <b>1</b>, against fIIa (110-fold), much more than against fXa (7-fold). Experimental deconstruction of <b>3</b> into smaller fragments revealed a binding cooperativity of the P3/P4 and propylene-linked β-d-glucose fragments, stronger in fIIa (15.5 kJ·mol<sup>–1</sup>) than in fXa (2.8 kJ·mol<sup>–1</sup>). The crystal structure of human fIIa in complex with <b>3</b> revealed a binding mode including a strong H-bond network between the glucose O1′, O3′, and O5′ and two critical residues, namely R221a and K224, belonging to the Na<sup>+</sup>-binding site which may allosterically perturb the specificity sites. The potential of <b>3</b> as antithrombotic agent was supported by its ability to inhibit thrombin generation and to stimulate fibrinolysis at submicromolar concentration
    corecore