74 research outputs found

    Bridging Physics and Biology Teaching through Modeling

    Get PDF
    As the frontiers of biology become increasingly interdisciplinary, the physics education community has engaged in ongoing efforts to make physics classes more relevant to life sciences majors. These efforts are complicated by the many apparent differences between these fields, including the types of systems that each studies, the behavior of those systems, the kinds of measurements that each makes, and the role of mathematics in each field. Nonetheless, physics and biology are both sciences that rely on observations and measurements to construct models of the natural world. In the present theoretical article, we propose that efforts to bridge the teaching of these two disciplines must emphasize shared scientific practices, particularly scientific modeling. We define modeling using language common to both disciplines and highlight how an understanding of the modeling process can help reconcile apparent differences between the teaching of physics and biology. We elaborate how models can be used for explanatory, predictive, and functional purposes and present common models from each discipline demonstrating key modeling principles. By framing interdisciplinary teaching in the context of modeling, we aim to bridge physics and biology teaching and to equip students with modeling competencies applicable across any scientific discipline.Comment: 10 pages, 2 figures, 3 table

    Using surface integrals for checking the Archimedes' law of buoyancy

    Full text link
    A mathematical derivation of the force exerted by an \emph{inhomogeneous} (i.e., compressible) fluid on the surface of an \emph{arbitrarily-shaped} body immersed in it is not found in literature, which may be attributed to our trust on Archimedes' law of buoyancy. However, this law, also known as Archimedes' principle (AP), does not yield the force observed when the body is in contact to the container walls, as is more evident in the case of a block immersed in a liquid and in contact to the bottom, in which a \emph{downward} force that \emph{increases with depth} is observed. In this work, by taking into account the surface integral of the pressure force exerted by a fluid over the surface of a body, the general validity of AP is checked. For a body fully surrounded by a fluid, homogeneous or not, a gradient version of the divergence theorem applies, yielding a volume integral that simplifies to an upward force which agrees to the force predicted by AP, as long as the fluid density is a \emph{continuous function of depth}. For the bottom case, this approach yields a downward force that increases with depth, which contrasts to AP but is in agreement to experiments. It also yields a formula for this force which shows that it increases with the area of contact.Comment: 15 pages, 3 figures, accepted for publication in "Eur. J. Phys." (10/20/2011

    Evaluations of People Depicted With Facial Disfigurement Compared to Those With Mobility Impairment

    Get PDF
    There are few extant studies of stereotyping of people with facial disfigurement. In the present study, two experiments (both within-participants) showed positive evaluations of people depicted as wheelchair users and, from the same participants, negative evaluations of people with facial disfigurements, compared to controls. The results of Experiment 2 suggested that implicit affective attitudes were more negative toward people with facial disfigurement than wheelchair users and were correlated with evaluation negativity. Social norms were perceived to permit more discrimination against people with facial disfigurement than against wheelchair users. These factors could help to explain the evaluative differences between the two disadvantaged groups

    Libri ricevuti e recensioni

    No full text
    corecore