19 research outputs found

    Microevolution of Serial Clinical Isolates of Cryptococcus neoformans var. grubii and C.Ā gattii

    Get PDF
    We thank the Broad Institute Sequencing Platform for generating the Illumina sequences. We thank Chen-Hsin Yu for helping on the data processing of the phenotypic tests. We acknowledge the South African National Institute for Communicable Diseasesā€™ GERMS-SA surveillance network through which these isolates were originally collected. This project has been funded in whole or in part by the following U.S. Health and Human Services grants from the National Institute of Allergy and Infectious Diseases: U19 AI110818 (Broad Institute), R01 AI93257 (J.R.P.), R01 AI73896 (J.R.P.), and R01 AI025783 (T.G.M.). R.A.F. was supported by the Wellcome Trust. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The content is solely our responsibility and does not necessarily represent the official views of the funders. The use of product names in this manuscript does not imply their endorsement by the U.S. Department of Health and Human Services. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the CDC.Peer reviewedPublisher PD

    Novel Role for Surfactant Protein A in Gastrointestinal Graft-versus-Host Disease

    Get PDF
    Graft-versus-host-disease (GVHD) is a severe and frequent complication of allogeneic bone marrow transplantation (BMT) that involves the gastrointestinal tract and lungs. The pathobiology of GVHD is complex and involves immune cell recognition of host antigens as foreign. We hypothesize a central role for the collectin surfactant protein A (SP-A) in regulating the development of GVHD after allogeneic BMT

    Efficacy of APX2039 in a Rabbit Model of Cryptococcal Meningitis

    Get PDF
    Cryptococcal Meningitis (CM) is uniformly fatal if not treated, and treatment options are limited. We previously reported on the activity of APX2096, the prodrug of the novel Gwt1 inhibitor APX2039, in a mouse model of CM. Here, we investigated the efficacy of APX2039 in mouse and rabbit models of CM. In the mouse model, the controls had a mean lung fungal burden of 5.95 log10 CFU/g, whereas those in the fluconazole-, amphotericin B-, and APX2039-treated mice were 3.56, 4.59, and 1.50 log10 CFU/g, respectively. In the brain, the control mean fungal burden was 7.97 log10 CFU/g, while the burdens were 4.64, 7.16, and 1.44 log10 CFU/g for treatment with fluconazole, amphotericin B, and APX2039, respectively. In the rabbit model of CM, the oral administration of APX2039 at 50ā€‰mg/kg of body weight twice a day (BID) resulted in a rapid decrease in the cerebrospinal fluid (CSF) fungal burden, and the burden was below the limit of detection by day 10 postinfection. The effective fungicidal activity (EFA) was -0.66 log10 CFU/mL/day, decreasing from an average of 4.75 log10 CFU/mL to 0 CFU/mL, over 8ā€‰days of therapy, comparing favorably with good clinical outcomes in humans associated with reductions of the CSF fungal burden of -0.4 log10 CFU/mL/day, and, remarkably, 2-fold the EFA of amphotericin B deoxycholate in this model (-0.33 log10 CFU/mL/day). A total drug exposure of the area under the concentration-time curve from 0 to 24 h (AUC0-24) of 25 to 50ā€‰mg Ā· h/L of APX2039 resulted in near-maximal antifungal activity. These data support the further preclinical and clinical evaluation of APX2039 as a new oral fungicidal monotherapy for the treatment of CM. IMPORTANCE Cryptococcal meningitis (CM) is a fungal disease with significant global morbidity and mortality. The gepix Gwt1 inhibitors are a new class of antifungal drugs. Here, we demonstrated the efficacy of APX2039, the second member of the gepix class, in rabbit and mouse models of cryptococcal meningitis. We also analyzed the drug levels in the blood and cerebrospinal fluid in the highly predictive rabbit model and built a mathematical model to describe the behavior of the drug with respect to the elimination of the fungal pathogen. We demonstrated that the oral administration of APX2039 resulted in a rapid decrease in the CSF fungal burden, with an effective fungicidal activity of -0.66 log10 CFU/mL/day, comparing favorably with good clinical outcomes in humans associated with reductions of -0.4 log10 CFU/mL/day. The drug APX2039 had good penetration of the central nervous system and is an excellent candidate for future clinical testing in humans for the treatment of CM

    Pharmacodynamics of ATI-2307 in a rabbit model of cryptococcal meningoencephalitis.

    No full text
    Cryptococcal meningoencephalitis (CM) is a devastating fungal disease with high morbidity and mortality. The current regimen that is standard-of-care involves a combination of three different drugs administered for up to one year. There is a critical need for new therapies due to both toxicity and inadequate fungicidal activity of the currently available antifungal drugs. ATI-2307 is a novel aryl amidine that disrupts the mitochondrial membrane potential and inhibits the respiratory chain complexes of fungi-it thus represents a new mechanism for direct antifungal action. Furthermore, ATI-2307 selectively targets fungal mitochondria via a fungal-specific transporter that is not present in mammalian cells. It has very potent in vitro anticryptococcal activity. In this study, the efficacy of ATI-2307 was tested in a rabbit model of CM. ATI-2307 demonstrated significant fungicidal activity at dosages between 1 and 2 mg/kg/d, and these results were superior to fluconazole and similar to amphotericin B treatment. When ATI-2307 was combined with fluconazole, the antifungal effect was greater than either therapy alone. While ATI-2307 has potent anticryptococcal activity in the subarachnoid space, its ability to reduce yeasts in the brain parenchyma was relatively less over the same study period. This new drug, with its unique mechanism of fungicidal action and ability to positively interact with an azole, has demonstrated sufficient anticryptococcal potential in this experimental setting to be further evaluated in clinical studies
    corecore