3 research outputs found

    An Automatic System for Modeling and Controlling Color Quality of Dyed Leathers in Tanneries

    Get PDF
    Abstract This paper presents an automatic system for modeling and controlling color quality of dyed leathers of an Italian tannery. The proposed software is implemented within the IT company system, and is fully integrated with the machineries of the finishing line, that is, a spraying cabin with a robotic carousel, and an electronic tintometer system. Suitable experimental tests according to the Design of Experiments (DoE) are firstly defined, executed and analyzed for a series of color tones of interest. In order to derive and validate a set of colorimetric models able to evaluate and predict the color rendering of painted leathers, a set of recipes of basic dye pigments and data of light reflection measured by a multispectral camera are used. Principal Component Analysis is applied for dimensionality reduction, and linear least squares regression is employed to identify these data-driven models, which are then used for color control purpose. A color correction feedback strategy is indeed developed in order to converge towards the various target formulations. The control algorithm aims at reaching the multispectral reading values of the reference, that is, the first sample of unknown color recipe starting from the most similar archive base and appropriately updating the recipe of pigments, by using the measurement of leather samples prepared from time to time by the finishing line machineries. A set of company data are used to successfully validate the identified colorimetric models and the proposed color correction strategy

    Chemical generation of arsane and methylarsanes with amine boranes. Potentialities for nonchromatographic speciation of arsenic

    No full text
    The efficiency of chemical generation of arsanes from inorganic arsenic, monomethylarsonic acid (MMAA) and dimethylarsinic acid (DMAA), to arsane, AsH3, monomethylarsane, CH3AsH2 (MMA), and dimethylarsane, (CH3)2AsH (DMA), has been investigated in different reaction media with the aim to better elucidate the mechanisms controlling their generation process and to find the experimental conditions to implement a nonchromatographic arsenic speciation analytical method, which is based on the selective determination of some arsenic species. Studies were performed by continuous flow hydride generation coupled with atomic spectrometry (CF-HG-AS), using different reductants such as borane-ammonia (AB), borane-tert-butylamine (TBAB), and sodium tetrahydridoborate (THB) in HCl and HClO4 media, in the presence or absence of l-cysteine (Cys). The efficiency of HG processes for MMA and DMA is mainly controlled by the reactivity of the substrates with the borane, which could be strongly influenced by the formation of ion couples. The protonation of arsane did not play a significant role in the employed reaction system. By taking advantage of the different reactivity pattern of As species in selected generation conditions, DMAA and MMAA could be selectively determined in 0.5 and 10 M HClO4 solutions, respectively, in the presence of Cys, with AB as the reducing agent. The presence of Cys as a masking agent and the peculiar reducing properties of AB ensured a good control of interferences, as far as it has been observed for Co(II), Ni(II), Cu(II), Fe(II), Fe(III). The overall time needed to complete the prereduction step has been verified for MMAA and DMAA at different acidities in order to achieve the best selectivity. The selective determination of DMAA with AB/Cys in HClO4 has been optimized and applied to certified reference materials (CRMs) of natural waters CASS-4, SLRS-4, and NASS-4 (NRCC). The estimation of DMAA concentration allows us to correct the concentration of As(III) for the interference of DMAA in the selective determination of As(III) according to a selective HG method recently reported.Peer reviewed: YesNRC publication: Ye
    corecore