77 research outputs found

    Focus on Quantum Memories

    Full text link
    Quantum memories are essential for quantum information processing and long-distance quantum communication. The field has recently seen a lot of progress, and the present focus issue offers a glimpse of these developments, showing both experimental and theoretical results from many of the leading groups around the world. On the experimental side, it shows work on cold gases, warm vapors, rare-earth ion doped crystals and single atoms. On the theoretical side there are in-depth studies of existing memory protocols, proposals for new protocols including approaches based on quantum error correction, and proposals for new applications of quantum storage. Looking forward, we anticipate many more exciting results in this area.Comment: 4 pages, no figures; editorial for NJP focus issue on quantum memorie

    Classical entanglement: Oxymoron or resource?

    Full text link
    In this work we review and further develop the controversial concept of "classical entanglement" in optical beams. We present a unified theory for different kinds of light beams exhibiting classical entanglement and we indicate several possible extensions of the concept. Our results shed new light upon the physics at the debated border between the classical and the quantum representations of the world.Comment: 9 pages, 6 figures. Version submitted to PR

    Single photons emitted by nano-crystals optically trapped in a deep parabolic mirror

    Full text link
    We investigate the emission of single photons from CdSe/CdS dot-in-rods which are optically trapped in the focus of a deep parabolic mirror. Thanks to this mirror, we are able to image almost the full 4π\pi emission pattern of nanometer-sized elementary dipoles and verify the alignment of the rods within the optical trap. From the motional dynamics of the emitters in the trap we infer that the single-photon emission occurs from clusters comprising several emitters. We demonstrate the optical trapping of rod-shaped quantum emitters in a configuration suitable for efficiently coupling an ensemble of linear dipoles with the electromagnetic field in free space.Comment: updated version after review, including supplementary material as appendi

    Optical trapping of nanoparticles by full solid-angle focusing

    Full text link
    Optical dipole-traps are used in various scientific fields, including classical optics, quantum optics and biophysics. Here, we propose and implement a dipole-trap for nanoparticles that is based on focusing from the full solid angle with a deep parabolic mirror. The key aspect is the generation of a linear-dipole mode which is predicted to provide a tight trapping potential. We demonstrate the trapping of rod-shaped nanoparticles and validate the trapping frequencies to be on the order of the expected ones. The described realization of an optical trap is applicable for various other kinds of solid-state targets. The obtained results demonstrate the feasibility of optical dipole-traps which simultaneously provide high trap stiffness and allow for efficient interaction of light and matter in free space.Comment: revised version accepted for publicatio

    Highly photo-stable Perovskite nanocubes: towards integrated single photon sources based on tapered nanofibers

    Full text link
    The interest in perovskite nanocrystals (NCs) such as CsPbBr3_3 for quantum applications is rapidly raising, as it has been demonstrated that they can behave as very efficient single photon emitters. The main problem to tackle in this context is their photo-stability under optical excitation. In this article, we present a full analysis of the optical and quantum properties of highly efficient perovskite nanocubes synthesized with an established method, which is used for the first time to produce quantum emitters, and is shown to ensure an increased photostability. These emitters exhibit reduced blinking together with a strong photon antibunching. Remarkably these features are hardly affected by the increase of the excitation intensity well above the emission saturation levels. Finally, we achieve for the first time the coupling of a single perovskite nanocube with a tapered optical nanofiber in order to aim for a compact integrated single photon source for future applications

    Compensation of Beer-Lambert attenuation using non-diffracting Bessel beams

    Full text link
    We report on a versatile method to compensate the linear attenuation in a medium, independently of its microscopic origin. The method exploits diffraction-limited Bessel beams and tailored on-axis intensity profiles which are generated using a phase-only spatial light modulator. This technique for compensating one of the most fundamental limiting processes in linear optics is shown to be efficient for a wide range of experimental conditions (modifying the refractive index and the attenuation coefficient). Finally, we explain how this method can be advantageously exploited in applications ranging from bio-imaging light sheet microscopy to quantum memories for future quantum communication networks
    corecore