548 research outputs found

    Is anti-cholinesterase therapy of Alzheimer's disease delaying progression?

    Get PDF
    During the last decade, a systematic effort to develop a pharmacological treatment for Alzheimer's disease (AD) resulted in three drugs being registered for the first time in the US and Europe. All three compounds are cholinesterase inhibitors (ChEI). The major therapeutic effect of ChEI on AD patients is to maintain cognitive function at a stable level during a 6-month to 1-year period of treatment, as compared to placebo. Additional drug effects are to slow down cognitive deterioration and improve behavioral and daily living activity. Recent studies show that in many patients the cognitive stabilization effect can be prolonged up to 24 months. This long-lasting effect suggests a mechanism of action other than symptomatic, and directly cholinergic. In vitro and in vivo studies have consistently demonstrated a link between cholinergic activation and amyloid precursor protein (APP) metabolism. Lesions of cholinergic nuclei cause a rapid increase in cortical APP and cholinergic synaptic function; the effect of such lesions can be reversed by ChEI treatment. A reduction in cholin-ergic neurotransmission, experimental or pathological, leads to amyloidogenic metabolism and contributes to the development of neuropatholo-gy and cognitive dysfunction. To explain the long-term effect of ChEI, for which evidence is available on an experimental as well as clinical level, a mechanism based on beta-amyloid metabolism is postulated. The question whether cholinergic stabilization implies simply slowing down progression of disability or also involves delay of disease progression is discusse

    Economic considerations of Alzheimer's disease and related disorders

    Get PDF
    Economic analyses of geriatric syndromes are seldom performed. However, demographic and epidemiological imperatives have led to significant interest in the evaluation of AD-related costs. Over 300 papers devoted to economic considerations of Alzheimer's disease have been published in peer-reviewed journals, within the last five years. In these papers, the chosen perspective (costs to society or to specific payers) is important. Analytical methods are still evolving and remain complex. Unresolved methodological issues will need to be addressed to further our understanding of long-term economic consequences. At present, it is clear that diagnostic and drug costs are low compared to the major cost of institutionalization. Thus, directing efforts at early diagnosis and delaying nursing home placement are two key cost-containment interventions. In this respect, the need to support informal care should not be underestimate

    Taxon ordering in phylogenetic trees by means of evolutionary algorithms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In in a typical "left-to-right" phylogenetic tree, the vertical order of taxa is meaningless, as only the branch path between them reflects their degree of similarity. To make unresolved trees more informative, here we propose an innovative Evolutionary Algorithm (EA) method to search the best graphical representation of unresolved trees, in order to give a biological meaning to the vertical order of taxa.</p> <p>Methods</p> <p>Starting from a West Nile virus phylogenetic tree, in a (1 + 1)-EA we evolved it by randomly rotating the internal nodes and selecting the tree with better fitness every generation. The fitness is a sum of genetic distances between the considered taxon and the <it>r </it>(radius) next taxa. After having set the radius to the best performance, we evolved the trees with (<it>λ </it>+ <it>Ό</it>)-EAs to study the influence of population on the algorithm.</p> <p>Results</p> <p>The (1 + 1)-EA consistently outperformed a random search, and better results were obtained setting the radius to 8. The (<it>λ </it>+ <it>Ό</it>)-EAs performed as well as the (1 + 1), except the larger population (1000 + 1000).</p> <p>Conclusions</p> <p>The trees after the evolution showed an improvement both of the fitness (based on a genetic distance matrix, then close taxa are actually genetically close), and of the biological interpretation. Samples collected in the same state or year moved close each other, making the tree easier to interpret. Biological relationships between samples are also easier to observe.</p

    The incidence and prevalence of diabetes in patients with serious mental illness in North West Wales: Two cohorts, 1875–1924 & 1994–2006 compared

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Against a background of interest in rates of diabetes in schizophrenia and related psychoses and claims that data from historical periods demonstrate a link that antedates modern antipsychotics, we sought to establish the rate of diabetes in first onset psychosis and subsequent prevalence in historical and contemporary cohorts.</p> <p>Methods</p> <p>Analysis of two epidemiologically complete databases of individuals admitted for mental illness. 3170 individuals admitted to the North Wales Asylum between 1875–1924 and tracked over 18,486 patient years and 394 North West Wales first admissions for schizophrenia and related psychoses between 1994 and 2006 and tracked after treatment.</p> <p>Results</p> <p>The prevalence of Type 2 diabetes among patients with psychoses at time of first admission in both historical and contemporary samples was 0%. The incidence of diabetes remained 0% in the historical sample throughout 15 years of follow-up but rose in the contemporary sample after 3, 5 and 6 years of treatment with an incidence rate double the expected population rate so that the 15 year prevalence is likely to be over 8%.</p> <p>Conclusion</p> <p>No association was found between diabetes and serious mental illness, but there may be an association between diabetes and treatment.</p

    A roadmap for the Human Developmental Cell Atlas

    Get PDF
    The Human Developmental Cell Atlas (HDCA) initiative, which is part of the Human Cell Atlas, aims to create a comprehensive reference map of cells during development. This will be critical to understanding normal organogenesis, the effect of mutations, environmental factors and infectious agents on human development, congenital and childhood disorders, and the cellular basis of ageing, cancer and regenerative medicine. Here we outline the HDCA initiative and the challenges of mapping and modelling human development using state-of-the-art technologies to create a reference atlas across gestation. Similar to the Human Genome Project, the HDCA will integrate the output from a growing community of scientists who are mapping human development into a unified atlas. We describe the early milestones that have been achieved and the use of human stem-cell-derived cultures, organoids and animal models to inform the HDCA, especially for prenatal tissues that are hard to acquire. Finally, we provide a roadmap towards a complete atlas of human development

    Long-COVID cognitive impairments and reproductive hormone deficits in men may stem from GnRH neuronal death

    Get PDF
    BACKGROUND: We have recently demonstrated a causal link between loss of gonadotropin-releasing hormone (GnRH), the master molecule regulating reproduction, and cognitive deficits during pathological aging, including Down syndrome and Alzheimer's disease. Olfactory and cognitive alterations, which persist in some COVID-19 patients, and long-term hypotestosteronaemia in SARS-CoV-2-infected men are also reminiscent of the consequences of deficient GnRH, suggesting that GnRH system neuroinvasion could underlie certain post-COVID symptoms and thus lead to accelerated or exacerbated cognitive decline. METHODS: We explored the hormonal profile of COVID-19 patients and targets of SARS-CoV-2 infection in post-mortem patient brains and human fetal tissue. FINDINGS: We found that persistent hypotestosteronaemia in some men could indeed be of hypothalamic origin, favouring post-COVID cognitive or neurological symptoms, and that changes in testosterone levels and body weight over time were inversely correlated. Infection of olfactory sensory neurons and multifunctional hypothalamic glia called tanycytes highlighted at least two viable neuroinvasion routes. Furthermore, GnRH neurons themselves were dying in all patient brains studied, dramatically reducing GnRH expression. Human fetal olfactory and vomeronasal epithelia, from which GnRH neurons arise, and fetal GnRH neurons also appeared susceptible to infection. INTERPRETATION: Putative GnRH neuron and tanycyte dysfunction following SARS-CoV-2 neuroinvasion could be responsible for serious reproductive, metabolic, and mental health consequences in long-COVID and lead to an increased risk of neurodevelopmental and neurodegenerative pathologies over time in all age groups. FUNDING: European Research Council (ERC) grant agreements No 810331, No 725149, No 804236, the European Union Horizon 2020 research and innovation program No 847941, the Fondation pour la Recherche Médicale (FRM) and the Agence Nationale de la Recherche en Santé (ANRS) No ECTZ200878 Long Covid 2021 ANRS0167 SIGNAL, Agence Nationale de la recherche (ANR) grant agreements No ANR-19-CE16-0021-02, No ANR-11-LABEX-0009, No. ANR-10-LABEX-0046, No. ANR-16-IDEX-0004, Inserm Cross-Cutting Scientific Program HuDeCA, the CHU Lille Bonus H, the UK Medical Research Council (MRC) and National Institute of Health and care Research (NIHR)
    • 

    corecore