2,696 research outputs found

    Particle acceleration by collisionless shocks containing large-scale magnetic-field variations

    Full text link
    Diffusive shock acceleration at collisionless shocks is thought to be the source of many of the energetic particles observed in space. Large-scale spatial variations of the magnetic field has been shown to be important in understanding observations. The effects are complex, so here we consider a simple, illustrative model. Here, we solve numerically the Parker transport equation for a shock in the presence of large-scale sinusoidal magnetic-field variations. We demonstrate that the familiar planar-shock results can be significantly altered as a consequence of large-scale, meandering magnetic lines of force. Because perpendicular diffusion coefficient κ\kappa_\perp is generally much smaller than parallel diffusion coefficient κ\kappa_\parallel, the energetic charged particles are trapped and preferentially accelerated along the shock front in the regions where the connection points of magnetic field lines intersecting the shock surface converge, and thus create the "hot spots" of the accelerated particles. For the regions where the connection points separate from each other, the acceleration to high energies will be suppressed. Further, the particles diffuse away from the "hot spot" regions and modify the spectra of downstream particle distribution. These features are qualitatively similar to the recent Voyager's observation in the Heliosheath. These results are potentially important for particle acceleration at shocks propagating in turbulent magnetized plasmas as well as those which contain large-scale nonplanar structures. Examples include anomalous cosmic rays accelerated by the solar wind termination shock, energetic particles observed in propagating heliospheric shocks, and galactic cosmic rays accelerated by supernova blast waves, etc.Comment: accepted to Ap

    Effects of interplanetary transport on derived energetic particle source strengths

    Get PDF
    We study the transport of solar energetic particles (SEPs) in the inner heliosphere in order to relate observations made by an observer at 1 AU to the number and total energy content of accelerated particles at the source, assumed to be near the Sun. We use a numerical simulation that integrates the trajectories of a large number of individual particles moving in the interplanetary magnetic field. We model pitch angle scattering and adiabatic cooling of energetic ions with energies from 50 keV nucleon^(−1) to 100 MeV nucleon^(−1). Among other things, we determine the number of times that particles of a given energy cross 1 AU and the average energy loss that they suffer because of adiabatic deceleration in the solar wind. We use a number of different forms of the interplanetary spatial diffusion coefficient and a wide range of scattering mean-free paths and consider a number of different ion species in order to generate a wide range of simulation results that can be applied to individual SEP events. We apply our simulation results to observations made at 1 AU of the 20 February 2002 solar energetic particle event, finding the original energy content of several species. We find that estimates of the source energy based on SEP measurements at 1 AU are relatively insensitive to the mean-free path and scattering scheme if adiabatic cooling and multiple crossings are taken into account

    Vortical amplification of magnetic field at inward shock of supernova remnant Cassiopeia A

    Full text link
    We present an interpretation of the time variability of the XX-ray flux recently reported from a multi-epoch campaign of 1515 years observations of the supernova remnant Cassiopeia A by {\it Chandra}. We show for the first time quantitatively that the [4.26][4.2-6] keV non-thermal flux increase up to 50%50\% traces the growth of the magnetic field due to vortical amplification mechanism at a reflection inward shock colliding with inner overdensities. The fast synchrotron cooling as compared with shock-acceleration time scale qualitatively supports the flux decrease.Comment: 5 pages, 2 figures, PRL in pres

    A Generalized Error Distribution Copula-based method for portfolios risk assessment

    Get PDF
    In this paper, we deal with the evaluation of Conditional Value-at-Risk in the framework of portfolio theory by using a modified Gaussian Copula – where the modification is obtained by introducing the Generalized Correlation Coefficient – and by assuming a Generalized Error Distribution with properly estimated shape parameter for the returns of the considered risky assets. In so doing, we add to the connection between standard Copula theory and financial risk assessment. A comparison analysis of our findings with those obtainable through a standard Gaussian Copula-based procedure in a set of real data is also presented

    The mixing of interplanetary magnetic field lines: A significant transport effect in studies of the energy spectra of impulsive flares

    Get PDF
    Using instrumentation on board the ACE spacecraft we describe short-time scale (~3 hour) variations observed in the arrival profiles of ~20 keV nucleon^(–1) to ~2 MeV nucleon^(–1) ions from impulsive solar flares. These variations occurred simultaneously across all energies and were generally not in coincidence with any local magnetic field or plasma signature. These features appear to be caused by the convection of magnetic flux tubes past the observer that are alternately filled and devoid of flare ions even though they had a common flare source at the Sun. In these particle events we therefore have a means to observe and measure the mixing of the interplanetary magnetic field due to random walk. In a survey of 25 impulsive flares observed at ACE between 1997 November and 1999 July these features had an average time scale of 3.2 hours, corresponding to a length of ~0.03 AU. The changing magnetic connection to the flare site sometimes lead to an incomplete observation of a flare at 1 AU; thus the field-line mixing is an important effect in studies of impulsive flare energy spectra

    Morphological variation of the newly confirmed population of the javelin sand boa, Eryx jaculus (Linnaeus, 1758) (Serpentes, erycidae) in Sicily, Italy

    Get PDF
    The presence of the Javelin sand boa in Sicily has recently been confirmed. Here the morphological characters and sexual dimorphism of the Sicilian population of Eryx jaculus are presented. Seven meristic and six metric characters in 96 specimens from Sicily were examined. The results show that tail length, snout-vent length, the distance between nostrils and the number of ventral and subcaudal scales are different between sexes. The characters found in the Sicilian population of the Javelin sand boa resemble those of the African population (ssp. jaculus) rather than the Eurasian population (ssp. turcicus), but biomolecular studies are necessary to understand its taxonomic identity

    Diffusion of energetic particles in turbulent MHD plasmas

    Full text link
    In this paper we investigate the transport of energetic particles in turbulent plasmas. A numerical approach is used to simulate the effect of the background plasma on the motion of energetic protons. The background plasma is in a dynamically turbulent state found from numerical MHD simulations, where we use parameters typical for the heliosphere. The implications for the transport parameters (i.e. pitch-angle diffusion coefficients and mean free path) are calculated and deviations from the quasi-linear theory are discussed.Comment: Accepted for publication in Ap
    corecore