11 research outputs found

    Immunizing Mice with Influenza Virus-like Particles Expressing the <i>Leishmania amazonensis</i> Promastigote Surface Antigen Alleviates Inflammation in Footpad

    No full text
    Cutaneous leishmaniasis (CL) is a tropical disease endemic in many parts of the world. Characteristic clinical manifestations of CL include the formation of ulcerative skin lesions that can inflict life-long disability if left untreated. Although drugs are available, they are unaffordable and out of reach for individuals who need them the most. Developing a highly cost-efficient CL vaccine could address this problem but such a vaccine remains unavailable. Here, we developed a chimeric influenza virus-like particle expressing the Leishmania amazonensis promastigote surface antigen (LaPSA-VLP). LaPSA-VLPs were self-assembled in Spodoptera frugiperda insect cell lines using the baculovirus expression system. After characterizing the vaccines and confirming successful VLP assembly, BALB/c mice were immunized with these vaccines for efficacy assessment. Sera acquired from mice upon subcutaneous immunization with the LaPSA-VLP specifically interacted with the L. amazonensis soluble total antigens. LaPSA-VLP-immunized mice elicited significantly greater quantities of parasite-specific IgG from the spleens, popliteal lymph nodes, and footpads than unimmunized mice. LaPSA-VLP immunization also enhanced the proliferation of B cell populations in the spleens of mice and significantly lessened the CL symptoms, notably the footpad swelling and IFN-γ-mediated inflammatory response. Overall, immunizing mice with the LaPSA-VLPs prevented mice from developing severe CL symptoms, signifying their developmental potential

    Cross-Protection Induced by Virus-like Particles Derived from the Influenza B Virus

    No full text
    The mismatch between the circulating influenza B virus (IBV) and the vaccine strain contributes to the rapid emergence of IBV infection cases throughout the globe, which necessitates the development of effective vaccines conferring broad protection. Here, we generated influenza B virus-like particle (VLP) vaccines expressing hemagglutinin, neuraminidase, or both antigens derived from the influenza B virus (B/Washington/02/2019 (B/Victoria lineage)-like virus, B/Phuket/3073/2013 (B/Yamagata lineage)-like virus. We found that irrespective of the derived antigen lineage, immunizing mice with the IBV VLPs significantly reduced lung viral loads, minimized bodyweight loss, and ensured 100% survival upon Victoria lineage virus B/Colorado/06/2017 challenge infection. These results were closely correlated with the vaccine-induced antibody responses and HI titer in sera, IgG, IgA antibody responses, CD4+ and CD8+ T cell responses, germinal center B cell responses, and inflammatory cytokine responses in the lungs. We conclude that hemagglutinin, neuraminidase, or both antigen-expressing VLPs derived from these influenza B viruses that were circulating during the 2020/21 season provide cross-protections against mismatched Victoria lineage virus (B/Colorado/06/2017) challenge infections

    Sublingual Vaccination with Live Influenza Virus Induces Better Protection Than Oral Immunization in Mice

    No full text
    Both sublingual (SL) and oral vaccine administration modalities are convenient, easy, and safe. Here, we have investigated the differences in vaccine efficacy that are induced by oral and sublingual immunization with live influenza virus (A/Hong Kong/1/1968, H3N2) in mice. Intranasally administering a lethal dose of the influenza virus resulted in the deaths of the mice, whereas viral replication in the lungs did not occur upon SL or oral administration. At 30 days post-immunization through the SL or oral route, the mice were intranasally challenge-infected with the lethal dose of the homologous influenza virus. Both SL and oral immunizations with the influenza virus elicited significantly higher levels of virus-specific IgG and IgA antibody responses, as well as HAI titers in the sera. Upon challenge infection, the SL immunization elicited higher levels of pulmonary IgG antibody and CD8+ T cell responses than the oral immunization. Enhanced splenic germinal center B (GC B) and B cell proliferation were also detected from the SL immunization, both of which were significantly greater than those of the oral immunization. Importantly, compared to oral immunization, significantly lessened lung viral loads and bodyweight reductions were observed from the SL immunization and these parameters contributed to prolonging the survival of the immunized mice. These results indicate that both SL and oral administration could be effective routes in inducing protective immunity against influenza virus infection, with SL immunization being the better of the two delivery routes

    Multiple Neuraminidase Containing Influenza Virus-like Particle Vaccines Protect Mice from Avian and Human Influenza Virus Infection

    No full text
    Avian influenza virus remains a threat for humans, and vaccines preventing both avian and human influenza virus infections are needed. Since virus-like particles (VLPs) expressing single neuraminidase (NA) subtype elicited limited heterosubtypic protection, VLPs expressing multiple NA subtypes would enhance the extent of heterosubtypic immunity. Here, we generated avian influenza VLP vaccines displaying H5 hemagglutinin (HA) antigen with or without avian NA subtypes (N1, N6, N8) in different combinations. BALB/c mice were intramuscularly immunized with the VLPs to evaluate the resulting homologous and heterosubtypic immunity upon challenge infections with the avian and human influenza viruses (A/H5N1, A/H3N2, A/H1N1). VLPs expressing H5 alone conferred homologous protection but not heterosubtypic protection, whereas VLPs co-expressing H5 and NA subtypes elicited both homologous and heterosubtypic protection against human influenza viruses in mice. We observed that VLP induced neuraminidase inhibitory activities (NAI), virus-neutralizing activity, and virus-specific antibody (IgG, IgA) responses were strongly correlated with the number of different NA subtype expressions on the VLPs. VLPs expressing all 3 NA subtypes resulted in the highest protection, indicated by the lowest lung titer, negligible body weight changes, and survival in immunized mice. These results suggest that expressing multiple neuraminidases in avian HA VLPs is a promising approach for developing a universal influenza A vaccine against avian and human influenza virus infections

    Protection Induced by Vaccination with Recombinant Baculovirus and Virus-like Particles Expressing <i>Toxoplasma gondii</i> Rhoptry Protein 18

    No full text
    Heterologous immunization is garnering attention as a promising strategy to improve vaccine efficacy. Vaccines based on recombinant baculovirus (rBV) and virus-like particle (VLP) are safe for use, but heterologous immunization studies incorporating these two vaccine platforms remain unreported to date. Oral immunization is the simplest, most convenient, and safest means for mass immunization. In the present study, mice were immunized with the Toxoplasma gondii rhoptry protein 18 (ROP18)-expressing rBVs (rBVs-ROP18) and VLPs (VLPs-ROP18) via oral, intranasal, and intramuscular (IM) routes to evaluate the protection elicited against the intracellular parasite T. gondii ME49 strain. Overall, boost immunization with VLPs-ROP18 induced a significant increase in T. gondii-specific antibody response in all three immunization routes. Parasite-specific mucosal and cerebral antibody responses were observed from all immunization groups, but the highest mucosal IgA response was detected from the intestines of orally immunized mice. Antibody-secreting cell (ASC), CD8+ T cell, and germinal center B cell responses were strikingly similar across all three immunization groups. Oral immunization significantly reduced pro-inflammatory cytokine IL-6 in the brains as well as that by IN and IM. Importantly, all of the immunized mice survived against lethal challenge infections where body weight loss was negligible from all three immunizations. These results demonstrated that protection induced against T. gondii by oral rBV-VLP immunization regimen is just as effective as IN or IM immunizations

    Cross-protection induced by virus-like particles containing influenza dual-hemagglutinin and M2 ectodomain - supplementary material

    No full text
    Supplementary Table 1. Homology of hemagglutinin between influenza A/Guangdong-Maonan/SWL1536/2019 (H1N1) virus and antigenically different strainsSupplementary Table 2. Homology of hemagglutinin between influenza A/Hong Kong/ 2671/2019 (H3N2) virus and antigenically different strains</p

    Protective mucosal and systemic immunity induced by virus-like particles expressing Toxoplasma gondii cyst wall protein.

    No full text
    Toxoplasma gondii host cellular invasion factors such as the rhoptry proteins, micronemal antigens, or other subcellular compartment proteins have shown limited vaccine efficacies. T. gondii cyst wall protein (CST1) as a cyst persistence factor is critical for cyst wall integrity and bradyzoite persistence. Here, we generated influenza virus-like particles (VLPs) expressing the T. gondii CST1 and evaluated the mucosal as well as systemic immunities induced by VLPs. Intranasal immunization with the VLPs induced parasite-specific IgG and IgA antibody responses in sera and intestines. VLP immunization showed higher levels of germinal center B cell response and antibody-secreting cell (ASC) response upon challenge infection, indicating memory B cell response was induced. VLP-immunized mice showed a significant reduction of cyst counts and lower levels of pro-inflammatory cytokines (IFN-γ, IL-6) production in the brain upon T. gondii ME49 challenge infection compared to unimmunized control. Thus, VLP immunization protected mice from the lethal dose challenge infection with T. gondii ME49 and did not incur bodyweight loss. These results indicated that T. gondii CST1 containing VLPs can induce mucosal and systemic immunity and also suggest its developmental potential as an effective vaccine candidate against T. gondii infection

    Recombinant AMA1 Virus-like Particle Antigen for Serodiagnosis of <i>Toxoplasma gondii</i> Infection

    No full text
    Toxoplasmosis diagnosis predominantly relies on serology testing via enzyme-linked immunosorbent assay (ELISA), but these results are highly variable. Consequently, various antigens are being evaluated to improve the sensitivity and specificity of toxoplasmosis serological diagnosis. Here, we generated Toxoplasma gondii virus-like particles displaying AMA1 of T. gondii and evaluated their diagnostic potential. We found that AMA1 VLPs were highly sensitive and reacted with the sera acquired from mice infected with either T. gondii ME49 or RH strains. The overall IgG and IgM antibody responses elicited by AMA1 VLPs were substantially higher than those induced by the conventionally used T. gondii lysate antigen (TLA). Importantly, AMA1 VLPs were capable of detecting parasitic infection with T. gondii RH and ME49 as early as 1 week post-infection, even when mice were exposed to low infectious doses (5 × 103 and 10 cysts, respectively). AMA1 VLPs also did not cross-react with the immune sera acquired from Plasmodium berghei-infected mice. Compared to TLA, stronger antibody responses were induced by AMA1 VLPs when tested using T. gondii-infected human sera. The sensitivities and specificities of the two antigens were substantially different, with AMA1 VLPs demonstrating over 90% sensitivity and specificity, whereas these values were in the 70% range for the TLA. These results indicated that AMA1 VLPs can detect infections of both T. gondii ME49 and RH at an early stage of infection caused by very low infection doses in mice, and these could be used for serological diagnosis of human toxoplasmosis

    Protective Immunity Induced by Immunization with Baculovirus, Virus-like Particle, and Vaccinia Virus Expressing the AMA1 of Plasmodium berghei

    No full text
    Heterologous prime&ndash;boost immunization regimens using various vaccine platforms demonstrated promising results against infectious diseases. Here, mice were sequentially immunized with the recombinant baculovirus (rBV), virus-like particle (VLP), and recombinant vaccinia virus (rVV) vaccines expressing the Plasmodium berghei apical membrane antigen 1 (AMA1) for protective efficacy evaluation. The rBV_V_rVV heterologous immunization regimen elicited high levels of parasite-specific IgG, IgG2a, and IgG2b antibody responses in sera. Upon P. berghei challenge infection, proliferations of germinal center B cells in the inguinal lymph nodes, as well as blood CD4+ and CD8+ T cells were induced. More importantly, rBV_V_rVV immunization significantly diminished the parasitemia and prevented drastic bodyweight loss in mice post-challenge infection with P. berghei. Our findings revealed that immunization with rBV, VLP, and rVV expressing the AMA1 conferred protection against P. berghei infection, providing evidence for the potential implementation of this strategy
    corecore