11 research outputs found

    Designed Inhibitors of Insulin-Degrading Enzyme Regulate the Catabolism and Activity of Insulin

    Get PDF
    Background: Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. Methodology/Principal Findings: We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are ∼106 times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's “closed,” inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. Conclusions/Significance: The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes

    Synthesis of first tetrathiafulvalene-carbohydrate derivatives

    No full text
    In this communication a convenient and novel method for the synthesis of tetrathiafulvalene-carbohydrate (TTF) derivatives from anhydro triflyl-, iodo- and bromo-sugars is described

    Antibacterial and Antifugal Mono- and Di-substituted Symmetrical and Unsymmetrical Triazine-derived Schiff-bases and their Transition Metal Complexes

    No full text
    A new series of antibacterial and antifungal triazine-derived mono- and di-substituted (symmetrical and unsymmetrical) Schiff-bases and their cobalt(II), copper(II), nickel(II) and zinc(II) metal complexes have been synthesized and characterized by their elemental analyses, molar conductances, magnetic moments and IR and electronic spectral measurements. IR spectra indicated the ligands to act as tridentate towards divalent metal ions via a trazine-N, the azomethine-N and, indole-NH and deprotonated-O of salicylaldehyde. The magnetic moments and electronic spectral data suggest octahedral geometry for the Co(II), Ni(II) and Zn(II)complexes and square-pyramid for Cu(II) complexes. NMR spectral data of the ligands and their diamagnetic zinc(II) complexes well-define their proposed structures/geometries. Elemental analyses data of the ligands and metal complexes agree with their proposed structures/geometries. The synthesized ligands, along with their metal complexes were screened for their antibacterial activity against Escherichia coli, Bacillus subtillis, Shigella flexneri, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi and for antifungal activity against Trichophyton longifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glaberata. The results of these studies show the metal complexes to be more antibacterial/ antifungal against two or more species as compared to the uncomplexed Schiff-base ligands
    corecore