4 research outputs found

    Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    Get PDF
    A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size) as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance) is typically approximately 1 μm, whereas, for a microbeaker the pore size exceeds 1.5 μm and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs), with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction

    Biosensors and Biochips for Nanomedical Applications: a Review

    No full text
    In the last few decades, a tremendous growth in the field of nanotechnology has been witnessed and its applications to various disciplines are being continuously explored. In this review article, we focus on a very important and emerging area of nano-bio sensors and biochips, which have prospects of numerous applications to nanomedicine. We will discuss various topics of biosensors and transducers based on quantum dots (QD), porous silicon (PS), and Si-nanoparticles. A short discussion on biochips, along with their classification and applications to microarrays and drug delivery systems, is also presented. Some powerful optical techniques like Fluorescence Resonance Energy Transfer (FRET), and Surface Enhanced Raman Spectroscopy (SERS) that are often deployed in conjunction with biosensors and biochips, as an interface mechanism, are also reviewed

    Superparamagnetic iron oxide nanoparticle attachment on array of micro test tubes and microbeakers formed on p-type silicon substrate for biosensor applications

    No full text
    <p>Abstract</p> <p>A uniformly distributed array of micro test tubes and microbeakers is formed on a p-type silicon substrate with tunable cross-section and distance of separation by anodic etching of the silicon wafer in N, N-dimethylformamide and hydrofluoric acid, which essentially leads to the formation of macroporous silicon templates. A reasonable control over the dimensions of the structures could be achieved by tailoring the formation parameters, primarily the wafer resistivity. For a micro test tube, the cross-section (i.e., the pore size) as well as the distance of separation between two adjacent test tubes (i.e., inter-pore distance) is typically approximately 1 &#956;m, whereas, for a microbeaker the pore size exceeds 1.5 &#956;m and the inter-pore distance could be less than 100 nm. We successfully synthesized superparamagnetic iron oxide nanoparticles (SPIONs), with average particle size approximately 20 nm and attached them on the porous silicon chip surface as well as on the pore walls. Such SPION-coated arrays of micro test tubes and microbeakers are potential candidates for biosensors because of the biocompatibility of both silicon and SPIONs. As acquisition of data via microarray is an essential attribute of high throughput bio-sensing, the proposed nanostructured array may be a promising step in this direction.</p
    corecore