27,333 research outputs found

    Spherical agglomeration of superconducting and normal microparticles with and without applied electric field

    Full text link
    It was reported by R. Tao and coworkers that in the presence of a strong electric field superconducting microparticles assemble into balls of macroscopic dimensions. Such a finding has potentially important implications for the understanding of the fundamental physics of superconductors. However, we report here the results of experimental studies showing that (i) ball formation also occurs in the absence of an applied electric field, (ii) the phenomenon also occurs at temperatures above the superconducting transition temperature, and (iii) it can also occur for non-superconducting materials. Possible origins of the phenomenon are discussed.Comment: Small changes in response to referee's comments. To be published in Phys. Rev.

    Low-Mass X-Ray Binaries, Millisecond Radio Pulsars, and the Cosmic Star Formation Rate

    Full text link
    We report on the implications of the peak in the cosmic star-formation rate (SFR) at redshift z ~ 1.5 for the resulting population of low-mass X-ray binaries(LMXB) and for that of their descendants, the millisecond radio pulsars (MRP). Since the evolutionary timescales of LMXBs, their progenitors, and their descendants are thought be significant fractions of the time-interval between the SFR peak and the present epoch, there is a lag in the turn-on of the LMXB population, with the peak activity occurring at z ~ 0.5 - 1.0. The peak in the MRP population is delayed further, occurring at z < 0.5. We show that the discrepancy between the birthrate of LMXBs and MRPs, found under the assumption of a stead-state SFR, can be resolved for the population as a whole when the effects of a time-variable SFR are included. A discrepancy may persist for LMXBs with short orbital periods, although a detailed population synthesis will be required to confirm this. Further, since the integrated X-ray luminosity distribution of normal galaxies is dominated by X-ray binaries, it should show strong luminosity evolution with redshift. In addition to an enhancement near the peak (z ~ 1.5) of the SFR due to the prompt turn-on of the relatively short-lived massive X-ray binaries and young supernova remnants, we predict a second enhancement by a factor ~10 at a redshift between ~ 0.5 and ~ 1 due to the delayed turn-on of the LMXB population. Deep X-ray observations of galaxies out to z ~ 1 by AXAF will be able to observe this enhancement, and, by determining its shape as a function of redshift, will provide an important new method for constraining evolutionary models of X-ray binaries.Comment: 13 pages, including 1 figure. Accepted for publication in ApJ Letter

    Entropy in the Classical and Quantum Polymer Black Hole Models

    Full text link
    We investigate the entropy counting for black hole horizons in loop quantum gravity (LQG). We argue that the space of 3d closed polyhedra is the classical counterpart of the space of SU(2) intertwiners at the quantum level. Then computing the entropy for the boundary horizon amounts to calculating the density of polyhedra or the number of intertwiners at fixed total area. Following the previous work arXiv:1011.5628, we dub these the classical and quantum polymer models for isolated horizons in LQG. We provide exact micro-canonical calculations for both models and we show that the classical counting of polyhedra accounts for most of the features of the intertwiner counting (leading order entropy and log-correction), thus providing us with a simpler model to further investigate correlations and dynamics. To illustrate this, we also produce an exact formula for the dimension of the intertwiner space as a density of "almost-closed polyhedra".Comment: 24 page

    Enhancing Synchrony in Chaotic Oscillators by Dynamic Relaying

    Full text link
    In a chain of mutually coupled oscillators, the coupling threshold for synchronization between the outermost identical oscillators decreases when a type of impurity (in terms of parameter mismatch) is introduced in the inner oscillator(s). The outer oscillators interact indirectly via dynamic relaying, mediated by the inner oscillator(s). We confirm this enhancing of critical coupling in the chaotic regimes of R\"ossler system in absence of coupling delay and in Mackey-Glass system with delay coupling. The enhancing effect is experimentally verified in electronic circuit of R\"ossler oscillators.Comment: 4 pages, 9 figure

    Bosonisation Excercise in Three Dimensions: Gauged Massive Thirring Model

    Get PDF
    Bosonisation of the massive Thirring model, with a non-minimal and non-abelian gauging is studied in 2+1-dimensions. The static abelian model is solved completely in the large fermion mass limit and the spectrum is obtained. The non-abelian model is solved for a restricted class of gauge fields. In both cases explicit expressions for bosonic currents corresponding to the fermion currents are given.Comment: 11 pages, LaTeX, E-mail: [email protected]

    Fan Loops Observed by IRIS, EIS and AIA

    Full text link
    A comprehensive study of the physical parameters of active region fan loops is presented using the observations recorded with the Interface Region Imaging Spectrometer (IRIS), the EUV Imaging Spectrometer (EIS) on-board Hinode and the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on-board the Solar Dynamics Observatory (SDO). The fan loops emerging from non-flaring AR~11899 (near the disk-center) on 19th November, 2013 are clearly discernible in AIA 171~{\AA} images and those obtained in \ion{Fe}{8} and \ion{Si}{7} images using EIS. Our measurements of electron densities reveal that the footpoints of these loops are approximately at constant pressure with electron densities of logNe=\log\,N_{e}= 10.1 cm3^{-3} at log[T/K]=5.15\log\,[T/K]=5.15 (\ion{O}{4}), and logNe=\log\,N_{e}= 8.9 cm3^{-3} at log[T/K]=6.15\log\,[T/K]=6.15 (\ion{Si}{10}). The electron temperature diagnosed across the fan loops by means of EM-Loci suggest that at the footpoints, there are two temperature components at log[T/K]=4.95\log\,[T/K]=4.95 and 5.95, which are picked-up by IRIS lines and EIS lines respectively. At higher heights, the loops are nearly isothermal at log[T/K]=5.95\log\,[T/K]=5.95, that remained constant along the loop. The measurement of Doppler shift using IRIS lines suggests that the plasma at the footpoints of these loops is predominantly redshifted by 2-3~km~s1^{-1} in \ion{C}{2}, 10-15~km~s1^{-1} in \ion{Si}{4} and  ~15{--}20~km~s1^{-1} in \ion{O}{4}, reflecting the increase in the speed of downflows with increasing temperature from log[T/K]=4.40\log\,[T/K]=4.40 to 5.15. These observations can be explained by low frequency nanoflares or impulsive heating, and provide further important constraints on the modeling of the dynamics of fan loops.Comment: Accepted for publication in The Astrophysical Journal; 8 Figures, 11 page

    Solitons in 1+1 Dimensional Gauged Sigma Models

    Get PDF
    We study soliton solutions in 1+1 dimensional gauged sigma models, obtained by dimensional reduction from its 2+1 dimensional counterparts. We show that the Bogomol'nyi bound of these models can be expressed in terms of two conserved charges in a similar way to that of the BPS dyons in 3+1 dimensions. Purely magnetic vortices of the 2+1 dimensional completely gauged sigma model appear as charged solitons in the corresponding 1+1 dimensional theory. The scale invariance of these solitons is also broken because of the dimensional reduction. We obtain exact static soliton solutions of these models saturating the Bogomol'nyi bound.Comment: 21 pages, RevTeX, minor changes, version to appear in Physical Review

    Constrained Dynamics of an Anomalous (g/neq2)(g/neq 2) Relativistic Spinning Particle in Electromagnetic Background

    Full text link
    In this paper we have considered the dynamics of an anomalous (g2g\neq 2) charged relativistic spinning particle in the presence of an external electromagnetic field. The constraint analysis is done and the complete set of Dirac brackets are provided that generate the canonical Lorentz algebra and dynamics through Hamiltonian equations of motion. The spin-induced effective curvature of spacetime and its possible connection with Analogue Gravity models are commented upon.Comment: 10 pages Latex, minor corrections and changes in ref., slightly enlarged version, to appear in EPJ
    corecore