137 research outputs found

    Monte-Carlo Simulations of Thermal Comptonization Process in a Two Component Accretion Flow Around a Black Hole in presence of an Outflow

    Full text link
    A black hole accretion may have both the Keplerian and the sub-Keplerian component. In the so-called Chakrabarti-Titarchuk scenario, the Keplerian component supplies low energy (soft) photons while the sub-Keplerian component supplies hot electrons which exchange their energy with the soft photons through Comptonization or inverse Comptonization processes. In the sub-Keplerian component, a shock is generally produced due to the centrifugal force. The postshock region is known as the CENtrifugal pressure-supported BOundary Layer (CENBOL). In this paper, we compute the effects of the thermal and the bulk motion Comptonization on the soft photons emitted from a Keplerian disk by the CENBOL, the preshock sub-Keplerian disk and the outflowing jet. We study the emerging spectrum when the converging inflow and the diverging outflow (generated from the CENBOL) are simultaneously present. From the strength of the shock, we calculate the percentage of matter being carried away by the outflow and determine how the emerging spectrum depends on the outflow rate. The preshock sub-Keplerian flow is also found to Comptonize the soft photons significantly. The interplay between the up-scattering and down-scattering effects determines the effective shape of the emerging spectrum. By simulating several cases with various inflow parameters, we conclude that whether the preshock flow, or the postshock CENBOL or the emerging jet is dominant in shaping the emerging spectrum depends strongly on the geometry of the flow and the strength of the shock in the sub-Keplerian flow.Comment: 15 pages, 8 figure

    Eco-friendly and versatile brominating reagent prepared from a liquid bromine precursor

    Get PDF
    Facile bromination of various organic substrates has been demonstrated with a 2 : 1 bromide:bromate reagent prepared from the alkaline intermediate of the conventional bromine recovery process. The reagent is acidified in situ to generate HOBr as the reactive species, which effects bromination. Aromatic substrates that have been successfully brominated under ambient conditions without use of any catalyst include phenols, anilines, aromatic ethers and even benzene. Non-aromatic compounds bearing active methylene group were monobrominated selectively with the present reagent and olefinic compounds were converted into the corresponding bromohydrins in moderate yields. By obtaining the present reagent from the liquid bromine precursor, the twin advantages of avoiding liquid bromine and producing the reagent in a cost-effective manner are realised. When coupled with the additional advantage of high bromine atom efficiency, the present protocol becomes attractive all the way from "cradle to grave"

    Effects of Compton Cooling on the Hydrodynamic and the Spectral Properties of a Two Component Accretion Flow around a Black Hole

    Full text link
    We carry out a time dependent numerical simulation where both the hydrodynamics and the radiative transfer are coupled together. We consider a two-component accretion flow in which the Keplerian disk is immersed inside an accreting low angular momentum flow (halo) around a black hole. The injected soft photons from the Keplerian disk are reprocessed by the electrons in the halo. We show that in presence of an axisymmetric soft-photon source, the spherically symmetric Bondi flow losses its symmetry and becomes axisymmetric. The low angular momentum flow was observed to slow down close to the axis and formed a centrifugal barrier which added new features into the spectrum. Using the Monte Carlo method, we generated the radiated spectra as functions of the accretion rates. We find that the transitions from a hard state to a soft state is determined by the mass accretion rates of the disk and the halo. We separate out the signature of the bulk motion Comptonization and discuss its significance. We study how the net spectrum is contributed by photons suffering different number of scatterings and spending different amounts of time inside the Compton cloud. We study the directional dependence of the emitted spectrum as well.Comment: 20 pages, 14 figures, Accepted for publication in MNRA

    Novel Sp family-like transcription factors are present in adult insect cells and are involved in transcription from the polyhedrin gene initiator promoter

    Get PDF
    We earlier documented the involvement of a cellular factor, polyhedrin (polh) promoter-binding protein, in transcription from the Autographa californica nuclear polyhedrosis virus polh gene promoter. Sequences upstream of the polh promoter were found to influence polh promoter-driven transcription. Analysis of one such region, which could partially compensate for the mutated polh promoter and also activate transcription from the wild-type promoter, revealed a sequence (AcSp) containing a CACCC motif and a loose GC box resembling the binding motifs of the transcription factor Sp1. AcSp and the consensus Sp1 sequence (cSp) specifically bound factor(s) in HeLa and Spodoptera frugiperda(Sƒ9) insect cell nuclear extracts to generate identical binding patterns, indicating the similar nature of the factor(s) interacting with these sequences. The AcSp and cSp oligonucleotides enhanced in vivo expression of a polh promoter-driven luciferase gene. In vivo mopping of these factor(s) significantly reduced transcription from the polh promoter. Recombinant viruses carrying deletions in the upstream AcSp sequence confirmed the requirement of these factor(s) in polh promoter-driven transcription in the viral context. We demonstrate for the first time DNA-protein interactions involving novel members of the Sp family of proteins in adult insect cells and their involvement in transcription from the polh promoter

    Proteomic analysis of human plasma in chronic rheumatic mitral stenosis reveals proteins involved in the complement and coagulation cascade

    Get PDF
    BACKGROUND: Rheumatic fever in childhood is the most common cause of Mitral Stenosis in developing countries. The disease is characterized by damaged and deformed mitral valves predisposing them to scarring and narrowing (stenosis) that results in left atrial hypertrophy followed by heart failure. Presently, echocardiography is the main imaging technique used to diagnose Mitral Stenosis. Despite the high prevalence and increased morbidity, no biochemical indicators are available for prediction, diagnosis and management of the disease. Adopting a proteomic approach to study Rheumatic Mitral Stenosis may therefore throw some light in this direction. In our study, we undertook plasma proteomics of human subjects suffering from Rheumatic Mitral Stenosis (n = 6) and Control subjects (n = 6). Six plasma samples, three each from the control and patient groups were pooled and subjected to low abundance protein enrichment. Pooled plasma samples (crude and equalized) were then subjected to in-solution trypsin digestion separately. Digests were analyzed using nano LC-MS(E). Data was acquired with the Protein Lynx Global Server v2.5.2 software and searches made against reviewed Homo sapiens database (UniProtKB) for protein identification. Label-free protein quantification was performed in crude plasma only. RESULTS: A total of 130 proteins spanning 9–192 kDa were identified. Of these 83 proteins were common to both groups and 34 were differentially regulated. Functional annotation of overlapping and differential proteins revealed that more than 50% proteins are involved in inflammation and immune response. This was corroborated by findings from pathway analysis and histopathological studies on excised tissue sections of stenotic mitral valves. Verification of selected protein candidates by immunotechniques in crude plasma corroborated our findings from label-free protein quantification. CONCLUSIONS: We propose that this protein profile of blood plasma, or any of the individual proteins, could serve as a focal point for future mechanistic studies on Mitral Stenosis. In addition, some of the proteins associated with this disorder may be candidate biomarkers for disease diagnosis and prognosis. Our findings might help to enrich existing knowledge on the molecular mechanisms involved in Mitral Stenosis and improve the current diagnostic tools in the long run. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1559-0275-11-35) contains supplementary material, which is available to authorized users
    corecore