657 research outputs found

    PS-Sim: A Framework for Scalable Simulation of Participatory Sensing Data

    Full text link
    Emergence of smartphone and the participatory sensing (PS) paradigm have paved the way for a new variant of pervasive computing. In PS, human user performs sensing tasks and generates notifications, typically in lieu of incentives. These notifications are real-time, large-volume, and multi-modal, which are eventually fused by the PS platform to generate a summary. One major limitation with PS is the sparsity of notifications owing to lack of active participation, thus inhibiting large scale real-life experiments for the research community. On the flip side, research community always needs ground truth to validate the efficacy of the proposed models and algorithms. Most of the PS applications involve human mobility and report generation following sensing of any event of interest in the adjacent environment. This work is an attempt to study and empirically model human participation behavior and event occurrence distributions through development of a location-sensitive data simulation framework, called PS-Sim. From extensive experiments it has been observed that the synthetic data generated by PS-Sim replicates real participation and event occurrence behaviors in PS applications, which may be considered for validation purpose in absence of the groundtruth. As a proof-of-concept, we have used real-life dataset from a vehicular traffic management application to train the models in PS-Sim and cross-validated the simulated data with other parts of the same dataset.Comment: Published and Appeared in Proceedings of IEEE International Conference on Smart Computing (SMARTCOMP-2018

    ϵ\epsilon-Expansion in the Gross-Neveu Model from Conformal Field Theory

    Get PDF
    We compute the anomalous dimensions of a class of operators of the form (ψˉψ)p(\bar\psi\psi)^p and (ψˉψ)pψ(\bar\psi\psi)^p\psi to leading order in ϵ\epsilon in the Gross-Neveu model in 2+ϵ2+\epsilon dimensions. We use the techniques developed in arXiv: 1505.00963.Comment: 16 pages, some explanations in section 2 improved, references added and typos correcte

    Transition from radiatively inefficient to cooling dominated phase in two temperature accretion discs around black holes

    Full text link
    We investigate the transition of a radiatively inefficient phase of a viscous two temperature accreting flow to a cooling dominated phase and vice versa around black holes. Based on a global sub-Keplerian accretion disc model in steady state, including explicit cooling processes self-consistently, we show that general advective accretion flow passes through various phases during its infall towards a black hole. Bremsstrahlung, synchrotron and inverse Comptonization of soft photons are considered as possible cooling mechanisms. Hence the flow governs a much lower electron temperature ~10^8 - 10^{9.5}K compared to the hot protons of temperature ~10^{10.2} - 10^{11.8}K in the range of the accretion rate in Eddington units 0.01 - 100. Therefore, the solutions may potentially explain the hard X-rays and the gamma-rays emitted from AGNs and X-ray binaries. We finally compare the solutions for two different regimes of viscosity and conclude that a weakly viscous flow is expected to be cooling dominated compared to its highly viscous counterpart which is radiatively inefficient. The flow is successfully able to reproduce the observed luminosities of the under-fed AGNs and quasars (e.g. Sgr A*), ultra-luminous X-ray sources (e.g. SS433), as well as the highly luminous AGNs and ultra-luminous quasars (e.g. PKS 0743-67) at different combinations of the mass accretion rate and ratio of specific heats.Comment: 13 pages including 8 figures; couple of typos corrected; to appear in Research in Astronomy and Astrophysic

    Variation of the gas and radiation content in the sub-Keplerian accretion disk around black holes and its impact to the solutions

    Full text link
    We investigate the variation of the gas and the radiation pressure in accretion disks during the infall of matter to the black hole and its effect to the flow. While the flow far away from the black hole might be non-relativistic, in the vicinity of the black hole it is expected to be relativistic behaving more like radiation. Therefore, the ratio of gas pressure to total pressure (beta) and the underlying polytropic index (gamma) should not be constant throughout the flow. We obtain that accretion flows exhibit significant variation of beta and then gamma, which affects solutions described in the standard literature based on constant beta. Certain solutions for a particular set of initial parameters with a constant beta do not exist when the variation of beta is incorporated appropriately. We model the viscous sub-Keplerian accretion disk with a nonzero component of advection and pressure gradient around black holes by preserving the conservations of mass, momentum, energy, supplemented by the evolution of beta. By solving the set of five coupled differential equations, we obtain the thermo-hydrodynamical properties of the flow. We show that during infall, beta of the flow could vary upto ~300%, while gamma upto ~20%. This might have a significant impact to the disk solutions in explaining observed data, e.g. super-luminal jets from disks, luminosity, and then extracting fundamental properties from them. Hence any conclusion based on constant gamma and beta should be taken with caution and corrected.Comment: 22 pages including 8 figures; published in New Astronom

    Andrographis paniculata transcriptome provides molecular insights into tissue-specific accumulation of medicinal diterpenes

    Get PDF
    A summary of SSRs identified in leaf and root transcriptomes. (DOCX 11 kb

    Control of Three-Phase, Four-Wire PWM Rectifier

    Full text link

    Stochastic model of transcription factor-regulated gene expression

    Get PDF
    We consider a stochastic model of transcription factor (TF)-regulated gene expression. The model describes two genes: Gene A and Gene B which synthesize the TFs and the target gene proteins respectively. We show through analytic calculations that the TF fluctuations have a significant effect on the distribution of the target gene protein levels when the mean TF level falls in the highest sensitive region of the dose-response curve. We further study the effect of reducing the copy number of Gene A from two to one. The enhanced TF fluctuations yield results different from those in the deterministic case. The probability that the target gene protein level exceeds a threshold value is calculated with a knowledge of the probability density functions associated with the TF and target gene protein levels. Numerical simulation results for a more detailed stochastic model are shown to be in agreement with those obtained through analytic calculations. The relevance of these results in the context of the genetic disorder haploinsufficiency is pointed out. Some experimental observations on the haploinsufficiency of the tumour suppressor gene, Nkx3.1, are explained with the help of the stochastic model of TF-regulated gene expression.Comment: 17 pages, 11 figures. Accepted for publication in Physical Biolog

    Solving relativistic hydrodynamic equation in presence of magnetic field for phase transition in a neutron star

    Full text link
    Hadronic to quark matter phase transition may occur inside neutron stars (NS) having central densities of the order of 3-10 times normal nuclear matter saturation density (n0n_0). The transition is expected to be a two-step process; transition from hadronic to 2-flavour matter and two-flavour to β\beta equilibrated charge neutral three-flavour matter. In this paper we concentrate on the first step process and solve the relativistic hydrodynamic equations for the conversion front in presence of high magnetic field. Lorentz force due to magnetic field is included in the energy momentum tensor by averaging over the polar angles. We find that for an initial dipole configuration of the magnetic field with a sufficiently high value at the surface, velocity of the front increases considerably.Comment: 16 pages, 4 figures, same as published version of JPG, J. Phys. G: Nucl. Part. Phys. 39 (2012) 09520
    corecore