6,964 research outputs found

    Moire bands in twisted double-layer graphene

    Full text link
    A moire pattern is formed when two copies of a periodic pattern are overlaid with a relative twist. We address the electronic structure of a twisted two-layer graphene system, showing that in its continuum Dirac model the moire pattern periodicity leads to moire Bloch bands. The two layers become more strongly coupled and the Dirac velocity crosses zero several times as the twist angle is reduced. For a discrete set of magic angles the velocity vanishes, the lowest moire band flattens, and the Dirac-point density-of-states and the counterflow conductivity are strongly enhanced

    Investigation of the phase behaviour of the 1: 1 adduct of mesitylene and hexafluorobenzene

    Get PDF
    Variable temperature X-ray diffraction has been used to probe the structure and dynamics of the solid adducts of 1,3,5-trimethylbenzene (mesitylene) and hexafluorobenzene. PXRD patterns and DSC traces of near equimolar mixtures reveal two solid-state phase-transitions at 179.2 K and 111.0 K. The crystal structures of all three solid phases of this material have been solved by SXD. In contrast to previous studies on the adduct benzene–hexafluorobenzene, there is pairing of the mesitylene and hexafluorobenzene molecules in all three phases, each consisting of close-packed parallel columns of alternating C6H3(CH3)3 and C6F6 molecules packed face to face in a staggered conformation. Differences in structure between the phases illustrate the subtle interplay of quadrupole versus bond-dipole electrostatic interactions

    Payao: a community platform for SBML pathway model curation

    Get PDF
    Summary: Payao is a community-based, collaborative web service platform for gene-regulatory and biochemical pathway model curation. The system combines Web 2.0 technologies and online model visualization functions to enable a collaborative community to annotate and curate biological models. Payao reads the models in Systems Biology Markup Language format, displays them with CellDesigner, a process diagram editor, which complies with the Systems Biology Graphical Notation, and provides an interface for model enrichment (adding tags and comments to the models) for the access-controlled community members

    Explosion risk assessment model for underground mine atmosphere

    Get PDF
    In the coal mining industry, explosions or mine fires present the most hazardous safety threats for coal miners or mine rescue members. Hence, the determination of the mine atmosphere explosibility and its evolution are critical for the success of mine rescues or controlling the severity of a mine accident. However, although there are numbers of methods which can be used to identify the explosibility, none of them could well indicate the change to the explosion risk time evolution. The reason is that the underground sealed atmospheric compositions are so complicated and their dynamical changes are also affected by various influence factors. There is no one method that could well handle all such considerations. Therefore, accurately knowing the mine atmospheric status is still a complicated problem for mining engineers. Method of analyzing the explosion safety margin for an underground sealed atmosphere is urgently desired. This article is going to propose a series of theoretical explosion risk assessment models to fully analyze the evolution of explosion risk in an underground mine atmosphere. Models are based on characteristics of the Coward explosibility diagram with combining mathematical analyzing approaches to address following problems: (1) for an "not-explosive" atmosphere, judging the evolution of explosion risk and estimating the change-of-state time span from "not-explosive" to "explosive" and (2) for an "explosive" atmosphere, estimating the "critical" time span of moving out of explosive zone and stating the best risk mitigation strategy. Such research efforts could not only help mine operators understand the explosibility risk of a sealed mine atmosphere but also provide a useful tool to wisely control explosive atmosphere away from any dangers. In order to demonstrate research findings, case studies for derived models are shown and are also used to instruct readers how to apply them. The results provide useful information for effectively controlling an explosive underground sealed atmosphere

    The utilization and safety of umeclidinium and umeclidinium/vilanterol in UK primary care: a retrospective cohort study

    Get PDF
    Background: Umeclidinium bromide (UMEC) and umeclidinium/vilanterol (UMEC/VI) received European approval for maintenance treatment of patients with chronic obstructive pulmonary disease (COPD) in 2014. This study examined prescribing patterns, possible off-label prescribing, potential safety-related outcomes and adherence of these medications in routine clinical practice post-approval. Methods: This retrospective, multi-database, longitudinal observational study of new users of UMEC, UMEC/VI, or other long-acting bronchodilators (LABD) analyzed data from UK electronic health record databases (primary care cohort), linked to hospital data (linked cohort). Off-label prescribing, safety outcomes (cardiovascular, respiratory, and mortality), treatment patterns, and medication adherence were assessed. Results: In the primary care cohort (new users of UMEC n=3875; UMEC/VI n=2224; other LABD n=32,809), two-thirds of UMEC users were prescribed concomitant inhaled corticosteroids/long-acting β2-agonists. Possible off-label prescribing, defined as use in patients without COPD, was similar for UMEC (7.0%) and UMEC/VI (8.8%), but higher for new users of other LABD (18.0%). There were 547 UMEC users and 512 UMEC/VI users in the linked cohort. In both cohorts, incidence rates (IRs) of cardiovascular outcomes were similar for UMEC and UMEC/VI users (myocardial infarction IR per 1000 person-years [95% CIs]: UMEC 6.9 [4.4, 10.2]; UMEC/VI 6.8 [3.5, 11.9]). IRs of pneumonia and acute COPD exacerbations (AECOPD) were slightly higher among UMEC users compared with UMEC/VI users (AECOPD IR per 1000 person-years [95% CIs]: UMEC 979 [931, 1030]; UMEC/VI 746 [687, 811]). Adherence (medication possession ratio ≥ 80%) was 64% for UMEC and UMEC/VI. Conclusion: Most new users of UMEC were receiving multiple-inhaler triple therapy. Off-label prescribing was uncommon for new users of UMEC and UMEC/VI. Incidence of cardiovascular and respiratory outcomes was as expected for these drug classes. This study provides evidence that UMEC and UMEC/VI are being prescribed appropriately and their safety profile remains unchanged

    Deep learning-enabled multiplexed point-of-care sensor using a paper-based fluorescence vertical flow assay

    Full text link
    We demonstrate multiplexed computational sensing with a point-of-care serodiagnosis assay to simultaneously quantify three biomarkers of acute cardiac injury. This point-of-care sensor includes a paper-based fluorescence vertical flow assay (fxVFA) processed by a low-cost mobile reader, which quantifies the target biomarkers through trained neural networks, all within <15 min of test time using 50 microliters of serum sample per patient. This fxVFA platform is validated using human serum samples to quantify three cardiac biomarkers, i.e., myoglobin, creatine kinase-MB (CK-MB) and heart-type fatty acid binding protein (FABP), achieving less than 0.52 ng/mL limit-of-detection for all three biomarkers with minimal cross-reactivity. Biomarker concentration quantification using the fxVFA that is coupled to neural network-based inference is blindly tested using 46 individually activated cartridges, which showed a high correlation with the ground truth concentrations for all three biomarkers achieving > 0.9 linearity and < 15 % coefficient of variation. The competitive performance of this multiplexed computational fxVFA along with its inexpensive paper-based design and handheld footprint make it a promising point-of-care sensor platform that could expand access to diagnostics in resource-limited settings.Comment: 17 Pages, 6 Figure

    Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-α-Mediated Activation of NF-κB by targeting p65.

    Get PDF
    Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-κB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-α which is a strong NF-κB stimulator. Here we investigated whether HBoV proteins modulate TNF-α-mediated activation of the NF-κB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-κB activation in response to TNF-α. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IκB kinase alpha (IKKα)-, IκB kinase beta (IKKβ)-, constitutively active mutant of IKKβ (IKKβ SS/EE)-, or p65-induced NF-κB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn't interfere with TNF-α-mediated IκBα phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-α-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-κB activation. This is the first time that HBoV has been shown to inhibit NF-κB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis

    Dynamic modeling of mean-reverting spreads for statistical arbitrage

    Full text link
    Statistical arbitrage strategies, such as pairs trading and its generalizations, rely on the construction of mean-reverting spreads enjoying a certain degree of predictability. Gaussian linear state-space processes have recently been proposed as a model for such spreads under the assumption that the observed process is a noisy realization of some hidden states. Real-time estimation of the unobserved spread process can reveal temporary market inefficiencies which can then be exploited to generate excess returns. Building on previous work, we embrace the state-space framework for modeling spread processes and extend this methodology along three different directions. First, we introduce time-dependency in the model parameters, which allows for quick adaptation to changes in the data generating process. Second, we provide an on-line estimation algorithm that can be constantly run in real-time. Being computationally fast, the algorithm is particularly suitable for building aggressive trading strategies based on high-frequency data and may be used as a monitoring device for mean-reversion. Finally, our framework naturally provides informative uncertainty measures of all the estimated parameters. Experimental results based on Monte Carlo simulations and historical equity data are discussed, including a co-integration relationship involving two exchange-traded funds.Comment: 34 pages, 6 figures. Submitte

    SSMap: A new UniProt-PDB mapping resource for the curation of structural-related information in the UniProt/Swiss-Prot Knowledgebase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequences and structures provide valuable complementary information on protein features and functions. However, it is not always straightforward for users to gather information concurrently from the sequence and structure levels. The UniProt knowledgebase (UniProtKB) strives to help users on this undertaking by providing complete cross-references to Protein Data Bank (PDB) as well as coherent feature annotation using available structural information. In this study, SSMap – a new UniProt-PDB residue-residue level mapping – was generated. The primary objective of this mapping is not only to facilitate the two tasks mentioned above, but also to palliate a number of shortcomings of existent mappings. SSMap is the first isoform sequence-specific mapping resource and is up-to-date for UniProtKB annotation tasks. The method employed by SSMap differs from the other mapping resources in that it stresses on the correct reconstruction of the PDB sequence from structures, and on the correct attribution of a UniProtKB entry to each PDB chain by using a series of post-processing steps.</p> <p>Results</p> <p>SSMap was compared to other existing mapping resources in terms of the correctness of the attribution of PDB chains to UniProtKB entries, and of the quality of the pairwise alignments supporting the residue-residue mapping. It was found that SSMap shared about 80% of the mappings with other mapping sources. New and alternative mappings proposed by SSMap were mostly good as assessed by manual verification of data subsets. As for local pairwise alignments, it was shown that major discrepancies (both in terms of alignment lengths and boundaries), when present, were often due to differences in methodologies used for the mappings.</p> <p>Conclusion</p> <p>SSMap provides an independent, good quality UniProt-PDB mapping. The systematic comparison conducted in this study allows the further identification of general problems in UniProt-PDB mappings so that both the coverage and the quality of the mappings can be systematically improved for the benefit of the scientific community. SSMap mapping is currently used to provide PDB cross-references in UniProtKB.</p

    Off-trial evaluation of bisphosphonates in patients with metastatic breast cancer

    Get PDF
    BACKGROUND: Bisphosphonate therapy has been readily accepted as standard of care for individuals with bone metastases from breast cancer. In this study we determined whether the proportion of patients experiencing a skeletal related event (SRE) in a clinical practice population was similar to that observed in phase III randomized controlled studies. METHODS: A retrospective chart review was conducted of 110 patients receiving intravenous bisphosphonates for advanced breast cancer. The proportion of patients experiencing at least one SRE after 12 months of therapy was determined. SRE included vertebral or non-vertebral fracture, cord compression, surgery and/or radiotherapy to bone. RESULTS: The proportion of patients who had an SRE was 30% (28 individuals) and the median time to first event was greater than 350 days. Non-vertebral events and radiotherapy were the most frequent type of SRE, while cord compression and hypercalcaemia were rare (1%). Most patients in the study had bone-only disease (58.2%) and most had multiple bone lesions. In the first 12 months the mean duration of exposure to intravenous bisphosphonates was 261 days and most patients remained on treatment until just before death (median 27 days). CONCLUSION: This study suggests that the rate of clinically relevant SREs is substantially lower than the event rate observed in phase III clinical trials. We attribute this lower rate to observational bias. In the clinical trial setting it is possible that over-detection of skeletal events occurs due to the utilisation of regular skeletal survey or radionucleotide bone scan, whereas these procedures are not routine in clinical practice. Phase IV observational studies need to be conducted to determine the true benefits of bisphosphonate therapy in order to implement rationale use of bisphosphonates
    corecore