46 research outputs found

    On the Use of Cauchy Prior Distributions for Bayesian Logistic Regression

    Get PDF
    In logistic regression, separation occurs when a linear combination of the predictors can perfectly classify part or all of the observations in the sample, and as a result, finite maximum likelihood estimates of the regression coefficients do not exist. Gelman et al. (2008) recommended independent Cauchy distributions as default priors for the regression coefficients in logistic regression, even in the case of separation, and reported posterior modes in their analyses. As the mean does not exist for the Cauchy prior, a natural question is whether the posterior means of the regression coefficients exist under separation. We prove theorems that provide necessary and sufficient conditions for the existence of posterior means under independent Cauchy priors for the logit link and a general family of link functions, including the probit link. We also study the existence of posterior means under multivariate Cauchy priors. For full Bayesian inference, we develop a Gibbs sampler based on Polya-Gamma data augmentation to sample from the posterior distribution under independent Student-t priors including Cauchy priors, and provide a companion R package in the supplement. We demonstrate empirically that even when the posterior means of the regression coefficients exist under separation, the magnitude of the posterior samples for Cauchy priors may be unusually large, and the corresponding Gibbs sampler shows extremely slow mixing. While alternative algorithms such as the No-U-Turn Sampler in Stan can greatly improve mixing, in order to resolve the issue of extremely heavy tailed posteriors for Cauchy priors under separation, one would need to consider lighter tailed priors such as normal priors or Student-t priors with degrees of freedom larger than one

    Analysis of adiabatic transfer in cavity quantum electrodynamics

    Get PDF
    A three-level atom in a ∧ configuration trapped in an optical cavity forms a basic unit in a number of proposed protocols for quantum information processing. This system allows for efficient storage of cavity photons into long-lived atomic excitations, and their retrieval with high fidelity, in an adiabatic transfer process through the ‘dark state’ by a slow variation of the control laser intensity. We study the full quantum mechanics of this transfer process with a view to examine the non-adiabatic effects arising from inevitable excitations of the system to states involving the upper level of ∧, which is radiative. We find that the fidelity of storage is better, the stronger the control field and the slower the rate of its switching off. On the contrary, unlike the adiabatic notion, retrieval is better with faster rates of switching on of an optimal control field. Also, for retrieval, the behaviour with dissipation is non-monotonic. These results lend themselves to experimental tests. Our exact computations, when applied to slow variations of the control intensity for strong atom–photon couplings, are in very good agreement with Berry’s superadiabatic transfer results without dissipation

    Prepare-and-measure based QKD protocol under free-space losses

    Full text link
    In this study, we have theoretically presented a prepare-and-measure-based SARG04 protocol over free space. It has shown that the highest secret key rate is possible even under free-space losses with a maximum tolerance of noise.Comment: 4 pages, 1 figur

    Realistic theory of electromagnetically-induced transparency and slow light in a hot vapor of atoms undergoing collisions

    Full text link
    We present a realistic theoretical treatment of a three-level Λ\Lambda system in a hot atomic vapor interacting with a coupling and a probe field of arbitrary strengths, leading to electromagnetically-induced transparency and slow light under the two-photon resonance condition. We take into account all the relevant decoherence processes including col5Blisions. Velocity-changing collisions (VCCs) are modeled in the strong collision limit effectively, which helps in achieving optical pumping by the coupling beam across the entire Doppler profile. The steady-state expressions for the atomic density-matrix elements are numerically evaluated to yield the experimentally measured response characteristics. The predictions, taking into account a dynamic rate of influx of atoms in the two lower levels of the Λ\Lambda, are in excellent agreement with the reported experimental results for 4^4He*. The role played by the VCC parameter is seen to be distinct from that by the transit time or Raman coherence decay rate

    Measurement and shaping of biphoton spectral wavefunctions

    Get PDF
    In this work we present a simple method to reconstruct the complex spectral wavefunction of a biphoton, and hence gain complete information about the spectral and temporal properties of a photon pair. The technique, which relies on quantum interference, is applicable to biphoton states produced with a monochromatic pump when a shift of the pump frequency produces a shift in the relative frequencies contributing to the biphoton. We demonstrate an example of such a situation in type-II parametric down-conversion (SPDC) allowing arbitrary paraxial spatial pump and detection modes. Moreover, our test cases demonstrate the possibility to shape the spectral wavefunction. This is achieved by choosing the spatial mode of the pump and of the detection modes, and takes advantage of spatiotemporal correlations.Comment: Supplementary information also available. Comments and feedback appreciated. Compared to the previous version, here we have made the following changes: -corrected a typo in the text between Eq. (11) and (12) -corrected a typo in the references -added reference

    Phase diffusion pattern in quantum nondemolition systems

    Get PDF
    We quantitatively analyze the dynamics of the quantum phase distribution associated with the reduced density matrix of a system, as the system evolves under the influence of its environment with an energy-preserving quantum nondemolition (QND) type of coupling. We take the system to be either an oscillator (harmonic or anharmonic) or a two-level atom (or equivalently, a spin-1/2 system), and model the environment as a bath of harmonic oscillators, initially in a general squeezed thermal state. The impact of the different environmental parameters is explicitly brought out as the system starts out in various initial states. The results are applicable to a variety of physical systems now studied experimentally with QND measurements.Comment: 18 pages, REVTeX, 8 figure

    Obesity and diabetes genetic variants associated with gestational weight gain

    Get PDF
    To determine whether genetic variants associated with diabetes and obesity predict gestational weight gain
    corecore