123 research outputs found

    Acid/Base Controlled Size Modulation of Capsular Phosphates, Hydroxide Encapsulation, Quantitative and Clean Extraction of Sulfate with Carbonate Capsules of a Tripodal Urea Receptor

    Get PDF
    A simple tris-(2-aminoethyl) amine based pentafluorophenyl substituted tripodal urea receptor L has been extensively studied as a versatile receptor for various anions. Combined H-1-NMR, Isothermal Titration Calorimetry (ITC) and single crystal X-ray diffraction studies reveal that mononegative anions like F-, OH- and H2PO4- are encapsulated into the pseudocapsular dimeric assemblies of L with 1 : 1 stoichiometry whereas dinegative anions like CO32-, SO42- and HPO42- form tight capsular dimeric assemblies of L with 1 : 2 stoichiometries. Single crystal X-ray diffraction study clearly depicts that the size of the dimer of H2PO4- encapsulated pseudocapsule is 13.8 angstrom whereas the size of the tight HPO42- encapsulated capsular assembly is only 9.9 angstrom. The charge dependent anion encapsulated capsular size modulation of phosphates has been demonstrated by simple acid/base treatment via solution state P-31-NMR and single crystal X-ray diffraction studies. L is also capable of encapsulating hydroxide in its C-3v-symmetric cavity that is achieved upon treating a DMSO solution of L with tetrabutylammonium (TBA) cyanide and characterized by single crystal X-ray diffraction study. To the best of our knowledge this is the first report on the encapsulation of hydroxide in a neutral synthetic receptor. The excellent property of L to quantitatively capture aerial CO2 in the form of CO32- capsules [L-2(CO3)][N(n-Bu)(4)](2) in basic DMSO solution has been utilized to study the liquid-liquid extraction of SO42- from water via anion exchange. Almost quantitative and clean extraction of SO42- from water (99% from extracted pure mass and > 95% shown gravimetrically) has been unambiguously demonstrated by NMR, FT-IR, EDX, XRD and PXRD studies. Selective SO42- extraction is also demonstrated even in the presence of H2PO4- and NO3-. On the other hand the mixtures of L and TBACl (to solubilize L in CHCl3) results impure sulfate extraction even when 1 : 1 L/TBACl is used. Similar impure SO42- extraction is also observed when organic layers containing [L(Cl)][N(n-Bu)(4)] are used as the extractant, obtained upon precipitating SO42- from the extracted mass, [L-2(SO4)][N(n-Bu)(4)](2) in the carbonate capsules method using aqueous BaCl2 solution.Department of Science and TechnologyCSIR, IndiaChemistr

    KDM4C is an Oncogenic Histone Demethylase in Pancreatic Cancer

    Get PDF
    https://openworks.mdanderson.org/sumexp21/1230/thumbnail.jp

    The Histone Demethylase KDM4C is a Putative Oncogene in Pancreatic Cancer

    Get PDF
    https://openworks.mdanderson.org/sumexp22/1132/thumbnail.jp

    Primary explant cultures of adult and embryonic pancreas.

    Get PDF
    Summary The developmental plasticity of adult pancreas is evidenced by the ability to undergo conversion between different epithelial cell types. Specific examples of such conversions include acinar to ductal metaplasia, ductal to islet metaplasia, and generation of ductal structures within islets. Although 90% of human pancreatic cancers are classified as ductal adenocarcinoma, markers of all pancreatic epithelial cell types (acini, ductal, and endocrine) as well as markers of gastric and intestinal lineages can be detected in these tumors. In recent years considerable knowledge has been gained regarding regulation of cellular differentiation and various signaling pathways involved in normal and neoplastic pancreas through studies of pancreatic cancer and immortalized ductal cell lines. However, these studies provide little insight into the context of normal developmental cues, the disruption of which leads to organ pathology. Here we have described a detailed method for preparation, maintenance, and manipulation of adult and embryonic mouse pancreas. These methods may be utilized in studies involving normal epithelial differentiation, contributing to improved understanding of pancreatic development and disease

    Size class homogeneity of repeat lengths and evolutionary divergence of ribosomal RNA genes in fishes as studied by restriction fragment length analysis

    Get PDF
    Fish ribosomal RNA genes (rDNA) have been compared by restriction endonuclease digestion followed by Southern hybridization using rRNA or cloned rRNA genes as labelled probes. In several species belonging to the orders Cypriniformes and Perciformes, the simple restriction patterns revealed a high degree of size class homogeneity among the rDNA repeats and similar restriction map within a species. Different species have different restriction patterns and fragment lengths arising mostly out of different length of the nontranscribed spacer. Polymorphic restriction sites are present in some species. The species-specific differences in fragment lengths produced in rDNA by some restriction enzymes can thus be used to study interspecific fish hybrids

    Spin-crossover assisted metallization of few-layer FePS3_3 at 1.45 GPa

    Full text link
    Magnetic insulators in reduced dimension are the ideal model systems to study spin-crossover(SCO) induced cooperative behavior under pressure. Similar to the external perturbations like light illumination or temperature, external pressure may provide new pathway to accelerate giant lattice collapse,and subsequently Mott transition in van der Waals (vdW) materials with diminishing effect of the third dimension. Here, we investigate room-temperature layer-dependent SCO and insulator-metal transition in vdW magnet,FePS3, under high pressure using micro-Raman scattering.Experimentally obtained spectra, in agreement with the computed Raman modes, indicates evidence of IMT of FePS3 started off with a spin-state transition from a high (S=2) to low spin state (S=0) with a thickness dependent critical pressure (P_c) which reduces to 1.45 GPa in 3-layer flakes compared to 10.8 GPa for the bulk counterpart. Additionally, a broad Raman mode (P*) emerges between 310 cm^{-1} and 370 cm^{-1} at elevated pressure for three different thicknesses of FePS3 flakes (3-100 layers), also corroborated with computational results which suggests the pressure dependent decrease of metal-ligand bond distance(Fe-S) with lowering of magnetic moment in FePS3. Phenomenologically, our results in few-layer flakes with strong structural anisotropy which enhances the in-plane strain with applied pressure can be understood by adopting Hubbard model and considering the spectral-range (bandwidth W) as a function of layer numbers and pressure with a power-law scaling. Reduction of the critical pressure for phase transition in few-layer vdW magnets to 1-2 GPa marks the possibility of using nano-enclosure fit for use in device electronics where the pressure is induced due to interfacial adhesion, like in vdW heterostructure or molecules trapped between layers,and thereby,avoiding the conventional use of diamond anvil cell

    Anti-vibrio potential of bacterial and fungal endophytes isolated from Datura metel

    Get PDF
    43-53Bacterial and fungal endophytes were isolated and characterized from root and shoot of Datura metel and studied for their antimicrobial properties. Molecular identification of the endophytes, both bacteria and fungi were done using 16S rDNA and 18S rDNA sequencing, respectively. Out of the total bacterial endophytes, Bacillus subtilis was predominant in both the tissues. Of the nine fungal endophytes isolated both from root and shoot, Aspergillus versicolor was found to be dominant. These two dominant species of endophytes, B. subtilis and A. versicolor, were subjected to mass multiplication, and secondary metabolites extraction of the host plant endophytes were performed using solvents of different polarity. The respective extracts were then studied for their antimicrobial activity against different Vibrio cholerae strains. Both bacterial and fungal extracts showed impressive activity against the V. cholerae strains P5, NE2 and VC7233

    Paradoxical Role of AT-rich Interactive Domain 1A in Restraining Pancreatic Carcinogenesis

    Get PDF
    Background & Aims: ARID1A is postulated to be a tumor suppressor gene owing to loss-of-function mutations in human pancreatic ductal adenocarcinomas (PDAC). However, its role in pancreatic pathogenesis is not clear despite recent studies using genetically engineered mouse (GEM) models. We aimed at further understanding of its direct functional role in PDAC, using a combination of GEM model and PDAC cell lines. Methods: Pancreas-specific mutant Arid1a-driven GEM model (Ptf1a-Cre; KrasG12D; Arid1af/f or “KAC”) was generated by crossing Ptf1a-Cre; KrasG12D (“KC”) mice with Arid1af/f mice and characterized histologically with timed necropsies. Arid1a was also deleted using CRISPR-Cas9 system in established human and murine PDAC cell lines to study the immediate effects of Arid1a loss in isogenic models. Cell lines with or without Arid1a expression were developed from respective autochthonous PDAC GEM models, compared functionally using various culture assays, and subjected to RNA-sequencing for comparative gene expression analysis. DNA damage repair was analyzed in cultured cells using immunofluorescence and COMET assay. Results: Retention of Arid1a is critical for early progression of mutant Kras-driven pre-malignant lesions into PDAC, as evident by lower Ki-67 and higher apoptosis staining in “KAC” as compared to “KC” mice. Enforced deletion of Arid1a in established PDAC cell lines caused suppression of cellular growth and migration, accompanied by compromised DNA damage repair. Despite early development of relatively indolent cystic precursor lesions called intraductal papillary mucinous neoplasms (IPMNs), a subset of “KAC” mice developed aggressive PDAC in later ages. PDAC cells obtained from older autochthonous “KAC” mice revealed various compensatory (“escaper”) mechanisms to overcome the growth suppressive effects of Arid1a loss. Conclusions: Arid1a is an essential survival gene whose loss impairs cellular growth, and thus, its expression is critical during early stages of pancreatic tumorigenesis in mouse models. In tumors that arise in the setting of ARID1A loss, a multitude of “escaper” mechanisms drive progression
    • …
    corecore