1,527 research outputs found

    Substitution of scarce metals with special reference of standardisation in India

    Get PDF
    IN THE context of present economic conditions of the country, the substitution of' scarce metals has assumed great importance. The foreign exchange position of the country has compelled the Government to think of various ways for the conservation of foreign exchange. It is, therefore, important that use of scarce metals should be minimised as far as possible. Considerable amount of foreign exchange is drained out annually for the import of various scarce metals for the need of industries. Most of the non-ferrous metals are scarce in India. The position varies from quite abundance in case of aluminium to deficiency in the case of copper, lead and zinc and a total absence in the case of nickel and tin

    Review of recent experimental progresses in Foundations of Quantum Mechanics and Quantum Information obtained in Parametric Down Conversion Experiments at IENGF

    Full text link
    We review some recent experimental progresses concerning Foundations of Quantum Mechanics and Quantum Information obtained in Quantum Optics Laboratory "Carlo Novero" at IENGF. More in details, after a short presentation of our polarization entangled photons source (based on precise superposition of two Type I PDC emission) and of the results obtained with it, we describe an innovative double slit experiment where two degenerate photons produced by PDC are sent each to a specific slit. Beyond representing an interesting example of relation between visibility of interference and "welcher weg" knowledge, this configuration has been suggested for testing de Broglie-Bohm theory against Standard Quantum Mechanics. Our results perfectly fit SQM results, but disagree with dBB predictions. Then, we discuss a recent experiment addressed to clarify the issue of which wave-particle observables are really to be considered when discussing wave particle duality. This experiments realises the Agarwal et al. theoretical proposal, overcoming limitations of a former experiment. Finally, we hint to the realization of a high-intensity high-spectral-selected PDC source to be used for quantum information studies

    The GRA Beam-Splitter Experiments and Particle-Wave Duality of Light

    Full text link
    Grangier, Roger and Aspect (GRA) performed a beam-splitter experiment to demonstrate the particle behaviour of light and a Mach-Zehnder interferometer experiment to demonstrate the wave behaviour of light. The distinguishing feature of these experiments is the use of a gating system to produce near ideal single photon states. With the demonstration of both wave and particle behaviour (in two mutually exclusive experiments) they claim to have demonstrated the dual particle-wave behaviour of light and hence to have confirmed Bohr's principle of complementarity. The demonstration of the wave behaviour of light is not in dispute. But we want to demonstrate, contrary to the claims of GRA, that their beam-splitter experiment does not conclusively confirm the particle behaviour of light, and hence does not confirm particle-wave duality, nor, more generally, does it confirm complementarity. Our demonstration consists of providing a detailed model based on the Causal Interpretation of Quantum Fields (CIEM), which does not involve the particle concept, of GRA's which-path experiment. We will also give a brief outline of a CIEM model for the second, interference, GRA experiment.Comment: 24 pages, 4 figure

    Classical mechanics without determinism

    Full text link
    Classical statistical particle mechanics in the configuration space can be represented by a nonlinear Schrodinger equation. Even without assuming the existence of deterministic particle trajectories, the resulting quantum-like statistical interpretation is sufficient to predict all measurable results of classical mechanics. In the classical case, the wave function that satisfies a linear equation is positive, which is the main source of the fundamental difference between classical and quantum mechanics.Comment: 11 pages, revised, to appear in Found. Phys. Let

    Study of low energy Si5_5^- and Cs^- implantation induced amorphization effects in Si(100)

    Full text link
    The damage growth and surface modifications in Si(100), induced by 25 keV Si5_5^- cluster ions, as a function of fluence, ϕ\phi, has been studied using atomic force microscopy (AFM) and channeling Rutherford backscattering spectrometry (CRBS). CRBS results indicate a nonlinear growth in damage from which it has been possible to get a threshold fluence, ϕ0\phi_0, for amorphization as 2.5×10132.5\times 10^{13} ions-cm2^{-2}. For ϕ\phi below ϕ0\phi_0, a growth in damage as well as surface roughness has been observed. At a ϕ\phi of 1×10141\times 10^{14} ions-cm2^{-2}, damage saturation coupled with a much reduced surface roughness has been found. In this case a power spectrum analysis of AFM data showed a significant drop, in spectral density, as compared to the same obtained for a fluence, ϕ<ϕ0\phi < \phi_0. This drop, together with damage saturation, can be correlated with a transition to a stress relaxed amorphous phase. Irradiation with similar mass Cs^- ions, at the same energy and fluence, has been found to result in a reduced accumulation of defects in the near surface region leading to reduced surface features.Comment: 7 pages, 4 figure

    Boson-fermion unification, superstrings, and Bohmian mechanics

    Full text link
    Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy

    The transition to classical chaos in a coupled quantum system through continuous measurement

    Get PDF
    Continuous observation of a quantum system yields a measurement record that faithfully reproduces the classically predicted trajectory provided that the measurement is sufficiently strong to localize the state in phase space but weak enough that quantum backaction noise is negligible. We investigate the conditions under which classical dynamics emerges, via continuous position measurement, for a particle moving in a harmonic well with its position coupled to internal spin. As a consequence of this coupling we find that classical dynamics emerges only when the position and spin actions are both large compared to \hbar. These conditions are quantified by placing bounds on the size of the covariance matrix which describes the delocalized quantum coherence over extended regions of phase space. From this result it follows that a mixed quantum-classical regime (where one subsystem can be treated classically and the other not) does not exist for a continuously observed spin 1/2 particle. When the conditions for classicallity are satisfied (in the large-spin limit), the quantum trajectories reproduce both the classical periodic orbits as well as the classically chaotic phase space regions. As a quantitative test of this convergence we compute the largest Lyapunov exponent directly from the measured quantum trajectories and show that it agrees with the classical value.Comment: 8 pages, 5 figure

    Pattern formation on ion-irradiated Si surface at energies where sputtering is negligible

    Get PDF
    The effect of low energy irradiation, where the sputtering is imperceptible, has not been deeply studied in the pattern formation. In this work, we want to address this question by analyzing the nanoscale topography formation on a Si surface, which is irradiated at room temperature by Arthorn ions near the displacement threshold energy, for incidence angles ranging from 0 degrees to 85 degrees. The transition from the smooth to ripple patterned surface, i.e., the stability/instability bifurcation angle is observed at 55 degrees, whereas the ripples with their wave-vector is parallel to the ion beam projection in the angular window of 60 degrees-70 degrees, and with 90 degrees rotation with respect to the ion beam projection at the grazing angles of incidence. A similar irradiation setup has been simulated by means of molecular dynamics, which made it possible, first, to quantify the effect of the irradiation in terms of erosion and redistribution using sequential irradiation and, second, to evaluate the ripple wavelength using the crater function formalism. The ripple formation results can be solely attributed to the mass redistribution based mechanism, as erosion due to ion sputtering near or above the threshold energy is practically negligible. Published by AIP Publishing.Peer reviewe
    corecore