49 research outputs found

    Učinak magnetnih nanočestica i ionske tekućine na performanse elektrokemijskih senzora

    Get PDF
    Magnetic nanoparticles and ionic liquid (IL, 1-hexyl-3-methyl-imidazolium bromide) based on graphene oxide (GO) composite provide unique physical and chemical properties in electrochemical sensors performance. Magnetic nanoparticles can cover active sites that increase chemical reactions with easy separation. IL increases the scan rate of electron transfer between the modified electrode and solution because it includes conductive adhesion properties. Also, IL in the next steps of design carbon paste electrodes (CPE) increases the cohesion. The study aims are to study the effects of magnetic nanoparticles and IL on the electrochemical detection of dopamine (DA). DA has a vital role in the mammalian central nervous system and change its value from the standard range leads broad mental diseases. But magnetic graphene oxide (MGO) may not exist capable of enhancing electrochemical signs alone. In this regard, after the synthesis of MGO, IL was established on composite. Then gold nanoparticles (AuNPs) and molecularly imprinted polymer (MIP) were modified MGO nanocomposite. MIP polymerization was continued by methacrylic acid (MAA) in the presence of DA as a template molecule. The developed sensor with modified nanocomposite studied by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The modified sensor based on nanocomposite with a broad concentration linear range, between 1×10-7 to 1×10-4 M and a limit of detection of 1×10-8 M (S/N=3) was used for the detection of DA in biological samples. Furthermore, these results prove that MGO was improved active sites of surface nanocomposite and IL was increased conductivity in the based electrochemical sensor for DA detection.Magnetne nanočestice i ionska tekućina (IL, 1-heksil-3-metil-imidazolijev bromid) na bazi kompozita grafenova oksida (GO) pružaju jedinstvena fizička i kemijska svojstva u izvedbi elektrokemijskih senzora. Magnetne nanočestice mogu pokriti aktivna mjesta koja povećavaju kemijske reakcije uz jednostavno odvajanje. IL povećava brzinu prijenosa elektrona između modificirane elektrode i otopine jer uključuje svojstva vodljive adhezije. Također, IL u sljedećim koracima dizajna elektroda ugljične paste (CPE) povećava koheziju. Cilj je studije proučavanje učinaka magnetnih nanočestica i IL-a na elektrokemijsku detekciju dopamina (DA). DA ima vitalnu ulogu u središnjemu živčanom sustavu sisavaca i promjena njegove vrijednosti iz standardnoga raspona dovodi do širokoga raspona mentalnih bolesti. Ali magnetni grafenov oksid (MGO) ne može sam poboljšati elektrokemijske signale. S tim u vezi, nakon sinteze MGO-a, IL je uspostavljen na kompozitu. Zatim su nanočestice zlata (AuNP) i molekularno utisnuti polimer (MIP) modificirali MGO nanokompozit. MIP polimerizacija nastavljena je metakrilnom kiselinom (MAA) u prisutnosti dopamina kao modelne molekule. Razvijeni senzor s modificiranim nanokompozitom proučavan je tehnikama ciklične voltametrije (CV) i diferencijalne pulsne voltametrije (DPV). Modificirani senzor na bazi nanokompozita sa širokim linearnim rasponom koncentracije, između 1×10-7 do 1×10-4 mol L-1 i granicom detekcije od 1×10-8 mol L-1 (S/N = 3) korišten je za detekciju dopamina u biološkim uzorcima. Ovi rezultati dokazuju da je MGO poboljšao aktivna mjesta površinskoga nanokompozita, a IL je povećao vodljivost u baziranome elektrokemijskom senzoru za detekciju dopamina

    NOVI ELEKTROKEMIJSKI SENZOR TEMELJEN NA METALNIM NANOČESTICAMA I MOLEKULARNO UTISNUTOM NANOKOMPOZITNOM POLIMERU S PRIMJENOM U BIOLOGIJI

    Get PDF
    Metal nanoparticles trapped in a biopolymer composite due to electrical conductivity properties improve electrochemical sensors with biomedical and environmental applications. The study aims are to design a novel molecularly imprinted polymer (MIP) composite based on magnetic graphene oxide (Fe3O4@GO) modified silica (SiO2) and gold nanoparticles (AuNPs) to electrochemical detect serotonin (5-hydroxytryptamine, 5-HT). A suitable amount of 5-HT is effective on motivational functions and the environment because it is a serotonergic neurotransmitter. But the desired nanocomposite may have a relatively low recognition, therefore must be in choosing the type of functional monomer be careful. In this regard, the design of the electrochemical sensor began by synthesis of Fe3O4@GO-SiO2@AuNPs nanocomposite. Then, MIP electropolymerization was carried out by using p-aminothiophenol (PATP)-functionalized Fe3O4@GO-SiO2@AuNPs nanocomposite in the presence of 5HT as a template molecule. Electrochemical polymerization of MIP nanocomposite was developed using cyclic voltammetry (CV) and the electrochemical properties of 5-HT were studied use differential pulse voltammetry (DPV) technology in the 5HT solution. After optimization of preparation and measurement conditions on the designed sensor, the 5HT concentration range is 0.1 μM to 10 μM linearly, and the detection limit was 1 × 10-5 μM (S / N = 3). The wide concentration range and low detection limit were presented metal nanoparticles functionalized MIP with appropriate functional monomer have a great effect on the performance of the sensor. Furthermore, PATP-functionalized metal nanoparticles increase the conductivity and recognition of the prepared MIP electrochemical sensor to the quantification of 5-HT in biological samples with high selectivity and recovery.Metalne nanočestice zadržane u biopolimernome kompozitu zbog električne vodljivosti poboljšavaju svojstva elektrokemijskih senzora u biomedicini i izučavanju okoliša. Ovdje je prikazan novi molekularni utisnuti kompozitni polimer temeljen na grafenskom oksidu (Fe3O4→GO), modificiranome silicijevim dioksidom (SiO2) i nanočesticama zlata (AuNPs), a s ciljem elektrokemijskoga opažanja serotonina (5-hidroksitriptamin, 5-HT). Određeni iznos 5-HT-a utječe na motivaciju i doživljaj okoliša jer se radi o neurotransmiteru središnjega živčanog sustava. Kod odabira nanokompozita, a zbog učinkovitosti, funkcionalni monomer mora biti pažljivo odabran. Stoga je molekularno utisnuti polimer (MUP) generiran uporabom p-aminotiofenola (PATP), funkcionalnoga nanokompozita Fe3O4→GO-SiO2→AuNPs, u nazočnosti 5HT-a kao templatne molekule. Elektrokemijska polimerizacija nanokompozitnoga MIP-a načinjena je uporabom cikličke voltametrije (CV). Elektrokemijska svojstva 5-HT-a izučena su uporabom različitih tehnologija pulsne voltametrije (PV) u njegovoj otopini. Nakon optimizacije mjernih uvjeta i senzora, koncentracija 5-HT-a linearno je mijenjana u rasponu 0,1 – 10 μM, uz granicu opažanja 1 × 10-5 μM (S / N = 3). Širok raspon koncentracije i nizak prag opažanja te korištene metalne nanočestice MUP-a uz odabrani monomer imali su velik utjecaj na svojstva senzora. Nadalje, metalne čestice funkcionalizirane PATP-om povećale su vodljivost i mogućnost opažanja elektrokemijskih senzora na MIP te kvantificiranje sadržaja 5-HT-a u biološkim uzorcima s velikom točnošću

    Design and construction of ion-selective electrode based on a new Schiff base and its application in determination of copper(II) ions 

    Get PDF
    A copper(II) selective sensor has been made from polyvinyl chloride matrix membrane based on the carrier, 2-(5-bromo-2-hyroxybenzylidineamino) pyridine 3-ol as an ionophore, ortho-nitrophenyl octyl ether (o-NPOE) as mediator solvent and sodium tetraphenylborate (NaTPB) as additive. The best performance is presented by membrane of composition of ionophore (Schiff base):PVC:o-NPOE:NaTPB of 3:33:63:1 (by weight). The membrane potential response is linear in the concentration range of 1.0×10-7 to 1.0×10-2 M with the Nernstian slope of 29.5±0.5 mV per decade of Cu2+ and a detection limit of 7.4×10-8 M. The response time of the sensor is very short; less than 10 s, and it can be used for at least 8 weeks without any difference in potential. The proposed copper(II) selective electrode displays excellent selectivity towards alkali, alkaline earth and transition metal ions and can be used in the pH range of 4-7. It has been successfully used as an indicator electrode for the determination of Cu(II) in water samples. The electrode has also been employed as an indicator electrode in titration of Cu2+ with EDTA

    Ultra-Trace Determination of Copper and Silver in Environmental Samples by Using Ionic Liquid-Based Single Drop Microextraction-Electrothermal Atomic Absorption Spectrometry

    No full text
    A sensitive, selective and effective ionic liquid-based single drop microextraction technique was\ud developed by using ionic liquid, 1-hexyl-3-methylimidazolium hexafluorophosphate, C6MIMPF6, coupled\ud with electrothermal atomic absorption spectrometry (ETAAS) for the determination of copper and silver in\ud environmental samples. Dithizone was used as chelating agent. Several factors that influence the\ud microextraction efficiency and ETAAS signal, such as pH, dithizone concentration, extraction time, amounts of\ud ionic liquid, stirring rate, pyrolysis and atomization temperature were investigated and the microextraction\ud conditions were established. In the optimum experimental conditions, the detection limits (3 s) of the method\ud were 4 and 8 ng L-1 and corresponding relative standard deviations (0.1 μg L-1, n = 6) were 4.2% and 4.8% for\ud Ag and Cu, respectively. The developed method was validated by analysis of a certified reference material and\ud applied to the determination of silver and coppe

    Design and construction of ion-selective electrode based on a new Schiff base and its application in determination of copper(II) ions

    No full text
    51-56A copper(II) selective sensor has been made from polyvinyl chloride matrix membrane based on the carrier, 2-(5-bromo-2-hyroxybenzylidineamino) pyridine 3-ol as an ionophore, ortho-nitrophenyl octyl ether (o-NPOE) as mediator solvent and sodium tetraphenylborate (NaTPB) as additive. The best performance is presented by membrane of composition of ionophore (Schiff base):PVC:o-NPOE:NaTPB of 3:33:63:1 (by weight). The membrane potential response is linear in the concentration range of 1.0×10-7 to 1.0×10-2 M with the Nernstian slope of 29.5±0.5 mV per decade of Cu2+ and a detection limit of 7.4×10-8 M. The response time of the sensor is very short; less than 10 s, and it can be used for at least 8 weeks without any difference in potential. The proposed copper(II) selective electrode displays excellent selectivity towards alkali, alkaline earth and transition metal ions and can be used in the pH range of 4-7. It has been successfully used as an indicator electrode for the determination of Cu(II) in water samples. The electrode has also been employed as an indicator electrode in titration of Cu2+ with EDTA

    Fluorescence Quenching of CdS Quantum Dots and Its Application to Determination of Copper and Nickel Contamination in Well and Dam Water

    No full text
    A sensitive and simple method based on the fluorescence quenching CdS quantum dots (QDs) was reported for the determination of copper(Cu2+) and nickel (Ni2+) in water samples. Water-soluble and biocompatible thioglycolic acid- capped CdSQDs was synthesized by one step process, then characterized by fluorescence, absorption spectroscopy and transmission electron microscopy (TEM). The fluorescence intensity of synthesized QDsremarkably decreased in the presence of Cu2+ and Ni2+ ions. The emission of CdSQDs had a linear decreasing relationship with Cu2+ and Ni2+ concentration in the range of 0.6 to 200 and 1 to 250 ng mL-1 with detection limits of 0.15 and 0.4 ng mL-1, respectively. Other potentially interfering ions such as iron, sodium, potassium, calcium, and magnesium ions did not affect the luminescence. The method showed good sensitivity and was satisfactorily applied to the determination of Cu2+ and Ni2+ contamination in real water samples, obtained from Nahand dam, Karkaj and Azarshahr well, tab and mineral waters. Normal 0 false false false EN-US X-NONE AR-SA <w:LatentStyles DefLockedState="false" DefUnhideWhenUsed="true" DefSemiHidden="true" DefQFormat="false" DefPriority="99" LatentStyleCount="267"> <w:LsdException Locked="false" Priority="0" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Normal"/> <w:LsdException Locked="false" Priority="9" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="heading 1"/> <w:LsdException Locked="false" Priority="10" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Title"/> <w:LsdException Locked="false" Priority="11" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtitle"/> <w:LsdException Locked="false" Priority="22" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Strong"/> <w:LsdException Locked="false" Priority="20" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Emphasis"/> <w:LsdException Locked="false" Priority="59" SemiHidden="false" UnhideWhenUsed="false" Name="Table Grid"/> <w:LsdException Locked="false" Priority="1" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="No Spacing"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 1"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 1"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 1"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 1"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 1"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 1"/> <w:LsdException Locked="false" Priority="34" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="List Paragraph"/> <w:LsdException Locked="false" Priority="29" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Quote"/> <w:LsdException Locked="false" Priority="30" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Quote"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 1"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 1"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 1"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 1"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 1"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 1"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 1"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 1"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 2"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 2"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 2"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 2"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 2"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 2"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 2"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 2"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 2"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 2"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 2"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 2"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 2"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 2"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 3"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 3"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 3"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 3"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 3"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 3"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 3"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 3"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 3"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 3"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 3"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 3"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 3"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 3"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 4"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 4"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 4"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 4"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 4"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 4"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 4"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 4"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 4"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 4"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 4"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 4"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 4"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 4"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 5"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 5"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 5"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 5"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 5"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 5"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 5"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 5"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 5"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 5"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 5"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 5"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 5"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 5"/> <w:LsdException Locked="false" Priority="60" SemiHidden="false" UnhideWhenUsed="false" Name="Light Shading Accent 6"/> <w:LsdException Locked="false" Priority="61" SemiHidden="false" UnhideWhenUsed="false" Name="Light List Accent 6"/> <w:LsdException Locked="false" Priority="62" SemiHidden="false" UnhideWhenUsed="false" Name="Light Grid Accent 6"/> <w:LsdException Locked="false" Priority="63" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 1 Accent 6"/> <w:LsdException Locked="false" Priority="64" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Shading 2 Accent 6"/> <w:LsdException Locked="false" Priority="65" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 1 Accent 6"/> <w:LsdException Locked="false" Priority="66" SemiHidden="false" UnhideWhenUsed="false" Name="Medium List 2 Accent 6"/> <w:LsdException Locked="false" Priority="67" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 1 Accent 6"/> <w:LsdException Locked="false" Priority="68" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 2 Accent 6"/> <w:LsdException Locked="false" Priority="69" SemiHidden="false" UnhideWhenUsed="false" Name="Medium Grid 3 Accent 6"/> <w:LsdException Locked="false" Priority="70" SemiHidden="false" UnhideWhenUsed="false" Name="Dark List Accent 6"/> <w:LsdException Locked="false" Priority="71" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Shading Accent 6"/> <w:LsdException Locked="false" Priority="72" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful List Accent 6"/> <w:LsdException Locked="false" Priority="73" SemiHidden="false" UnhideWhenUsed="false" Name="Colorful Grid Accent 6"/> <w:LsdException Locked="false" Priority="19" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Emphasis"/> <w:LsdException Locked="false" Priority="21" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Emphasis"/> <w:LsdException Locked="false" Priority="31" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Subtle Reference"/> <w:LsdException Locked="false" Priority="32" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Intense Reference"/> <w:LsdException Locked="false" Priority="33" SemiHidden="false" UnhideWhenUsed="false" QFormat="true" Name="Book Title"/> /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi; mso-bidi-language:AR-SA;}    </div

    N-Propargylamines: versatile building blocks in the construction of thiazole cores

    No full text
    Thiazoles and their hydrogenated analogues are not only key structural units in a wide variety of natural products but they also constitute important building blocks in medicinal chemistry. Therefore, the synthesis of these compounds using new protocols is always interesting. It is well known that N-propargylamines can undergo a number of cyclization reactions to produce various nitrogen-containing heterocycles. In this review, we highlight the most important developments on the synthesis of thiazole and its derivatives starting from N-propargylamines. This review will be helpful in the development of improved methods for the synthesis of natural and biologically important compounds
    corecore