5 research outputs found

    Response of OH airglow emissions to the mesospheric gravity waves and its comparisons with full wave model simulation at a low latitude Indian station

    Get PDF
    Quasi-monochromatic gravity-wave-induced oscillations, monitored using the mesospheric OH airglow emission over Kolhapur (16.8° N, 74.2° E), India, during January to April 2010 and January to December 2011, have been characterized using the Krassovsky method. The nocturnal variability reveals prominent wave signatures with periods ranging from 5.2 to 10.8 h as the dominant nocturnal wave with embedded short-period waves having wave periods of 1.5–4.4 h. The results show that the magnitude of the Krassovsky parameter, viz. |η|, ranged from 2.1 to 10.2 h for principal or long nocturnal waves (5.2–10.8 h observed periods), and from 1.5 to 5.4 h for the short waves (1.5–4.4 h observed periods) during the years of 2010 and 2011, respectively. The phase (i.e., Φ) values of the Krassovsky parameters exhibited larger variability and varied from −8.1 to −167°. The deduced mean vertical wavelengths are found to be approximately −60.2 ± 20 and −42.8 ± 35 km for long- and short-period waves for the year 2010. Similarly, for 2011 the mean vertical wavelengths are found to be approximately −77.6 ± 30 and −59.2 ± 30 km for long and short wave periods, respectively, indicating that the observations over Kolhapur were dominated by upward-propagating waves. We use a full-wave model to simulate the response of OH emission to the wave motion and compare the results with observed values

    Tidal and gravity waves study from the airglow measurements at Kolhapur(India)

    Get PDF
    Simultaneous photometric measurements of the OI 557.7 nm and OH (7, 2) band from a low latitude station, Kolhapur (16.8° N, 74.2° E) during the period 2004-2007 are analyzed to study the dominant waves present in the 80-100 km altitude region of the atmosphere. The nocturnal intensity variations of different airglow emissions are observed using scanning temperature controlled filter photometers. Waves having period lying between 2 and 12 hours have been recorded. Some of these waves having subharmonic tidal oscillation periods 4, 6, 8 and 12 hours propagate upward with velocity lying in the range 1.6-11.3 m/s and the vertical wave length lying between 28.6 and 163 kms. The other waves may be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application of these waves in studying the thermal structure of the region is discussed

    Study of equatorial plasma bubble during January to April 2012 over Kolhapur (India)

    Get PDF
    Over 53 nights of all sky airglow imager data collected during January-April 2012 from the low latitude station Kolhapur (16.68°N, 74.26°E; 10.6°N dip latitude) have been analyzed to study the F-region dynamics through the imaging of OI 630 nm emission line. The observed night airglow data were supported by the ionosonde measurements from Tirunelveli (8.7°N, 77.8°E; 0.51°N dip latitude). Well defined magnetic field aligned depletions were observed during the observation period. Out of 53 nights, 40 nights exhibited the occurrence of north-south aligned equatorial plasma bubbles. These plasma bubbles were found moving towards east with drift speed in range between 70 to 200 m s-1. We have analyzed the zonal drift velocity variation and relation of bubble occurrence with the base height of the ionosphere together with the effects of the geomagnetic Ap and solar flux F10.7 cm index in its first appearance

    Temporal and spatial deviation in F2 peak parameters derived from FORMOSAT-3/COSMIC

    No full text
    The plasma frequency profiles derived from the Constellation of Observing System for Meteorology, Ionosphere and Climate (COSMIC) radio occultation measurements are compared with ground-based ionosonde data during the year 2013. Equatorial and midlatitude five stations located in the Northern and Southern Hemisphere are considered: Jicamarca, Jeju, Darwin, Learmonth, and Juliusruh. The aim is to validate the COSMIC-derived data with ground-based measurements and to estimate the difference in plasma frequency (which represents electron density) and height of F2 layer peak during the daytime/nighttime and during different seasons by comparing the two data sets. Analysis showed that the nighttime data are better correlated than the daytime, and the maximum difference occurs at the equatorial ionospheric anomaly (EIA) station as compared to lower and midlatitude stations during the equinox months. The difference between daytime and nighttime correlations becomes insignificant at midlatitude stations. The statistical analysis of computed errors in foF2 (hmF2) showed Gaussian nature with the most probable error range of ±15% (±10%) at the equatorial and EIA stations, ±9% (±7%) outside the EIA region which reduced to ±8% (±6%) at midlatitude stations. The reduction in error at midlatitudes is attributed to the decrease in latitudinal electron density gradients. Comparing the analyzed data during the three geomagnetic storms and quiet days of the same months, it is observed that the differences are significantly enhanced during storm periods and the magnitude of difference in foF2 increases with the intensity of geomagnetic storm

    Lightning and convective rain study in different parts of India

    No full text
    The effect of solar variability parameters (solar flux (F10.7cm), cosmic ray flux, sunspot numbers) and meteorological parameters on convective rainfall and lightning flashes in four different Indian regions of equal area is studied. Regions are selected having different topological, vegetation, proximity with ocean and habitat features. Solar variability shows statistically insignificant effect on lightning flash and convective rainfall. The seasonal variation of lightning flashes and convective rainfall in each region could be explained considering the variation of CAPE and surface temperature in that region. The dependence of lightning flashes and convective rainfall on meteorological parameters varies from region to region, as is evident from correlation studies. Lightning flashes is well correlated (R=0.81) with CAPE in region R1 and barely correlated (R=0.23, 0.24) in region R3 and R4 whereas rainfall is well correlated (R>0.68) in all the regions. Lightning flashes are better correlated (R>0.57) with temperature in R1, R2 and R4 and moderately correlated in R3 (R=0.44). Rainfall in R3 is very well correlated (R=0.91) with surface temperature and there is insignificant correlation in R1 (R=0.09). There is very good positive correlation (R>0.59) between cloud cover and convective rainfall in the entire region and well negative correlation (-0.83<R<-0.61) between OLR and convective rainfall. OLR and cloud cover show little impact on lightning flashes. Lightning flashes and convective rainfall show average positive correlation (0.48<R<0.53). Aerosol concentration is the largest in region R4 and showed an increasing trend between 2007 and 2011. Lightning flashes and convective rainfall are positively correlated (0.10<R<0.58) with aerosol concentration
    corecore