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Simultaneous photometric measurements of the OI 557.7 nm and OH (7, 2) band from a low latitude
station, Kolhapur (16.8◦N, 74.2◦E) during the period 2004–2007 are analyzed to study the dominant
waves present in the 80–100 km altitude region of the atmosphere. The nocturnal intensity variations
of different airglow emissions are observed using scanning temperature controlled filter photometers.
Waves having period lying between 2 and 12 hours have been recorded. Some of these waves having
subharmonic tidal oscillation periods 4, 6, 8 and 12 hours propagate upward with velocity lying in the
range 1.6–11.3 m/s and the vertical wave length lying between 28.6 and 163 kms. The other waves may
be the upward propagating gravity waves or waves resulting from the interaction of inter-mode tidal
oscillations, interaction of tidal waves with planetary waves and gravity waves. Some times, the second
harmonic wave has higher vertical velocity than the corresponding fundamental wave. Application of
these waves in studying the thermal structure of the region is discussed.

1. Introduction

Atmospheric tides, planetary waves and gravity
waves play significant role in dynamic features of
the Mesosphere and Lower Thermosphere (MLT)
region by transporting energy and momentum
horizontally and vertically upward and also pro-
viding dynamical linkage between the lower atmo-
sphere and the MLT region. Atmospheric tides
are the global response of the atmosphere to the
periodic forcing of solar heating; propagate west-
ward following the motion of the Sun (Chapman
and Lindzen 1970) with periodicities equal to the

solar day and its sub-harmonics (i.e., 24, 12, 8,
6, 4, 3, 2 hr, etc). Tides are classified as migrat-
ing and non-migrating. The non-migrating tides
lead to strong longitudinal variations in amplitude
and phase of diurnal tide, whereas the migrating
tides contain diurnal, semidiurnal, terdiurnal and
other harmonics. The diurnal (24 hr period) tide is
mainly excited by the direct absorption of the sun-
light by water vapour in the troposphere and the
stratosphere, whereas the semidiurnal tide (12 hr
periods) is caused by ozone heating in the upper
stratosphere and the lower mesosphere. Studies
of the diurnal and the semidiurnal tides and its
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influences in the mesospheric region at various geo-
graphical locations have been made using lidar
(Taylor et al. 1999; Liu et al. 2007), radar (Zhang
et al. 2003; Forbes et al. 2004; Manson et al.
2004), airglow emissions (Wiens and Weill 1973;
Takahashi et al. 1998; Lopez-Gonzalez et al. 2005;
Won et al. 2007) and space-based airglow observa-
tions (Abreu and Yee 1989; Shepherd et al. 1995,
1998, 2004).

Airglow emissions are an outcome of chemi-
luminescence property of ambient atomic molecu-
lar species in the middle and the upper atmosphere.
The variability of emission intensity is dominated
by a long period as well as a short period struc-
ture that are commonly attributed to the passage
of tides, gravity waves, planetary waves and their
interplay. A large variation in diurnal behaviour
of the airglow emission rates as a function of the
year and of the latitude has been observed (Manson
et al. 2004). Lopez-Gonzalez et al. (2005) analyzed
airglow observations (the O2 atmospheric band and
the OH Meinel band) during the period 1998–2003
and showed that the amplitudes of the diurnal vari-
ation from summer to late autumn decrease by
more than a factor of two compared with those
in the winter and spring. Both temperatures and
emission rates showed the dominance of waves with
predominantly semidiurnal modulation through-
out the year. However, during spring, the semi-
diurnal variation changes to a diurnal type. They
also observed upward energy propagation during
most of the year, with some indication of down-
ward energy propagation close to the equinoxes.
Taori and Taylor (2010) analyzing mesospheric O2

airglow emission intensity and temperature data
showed the dominant presence of terdiurnal (8 hr
periods) tide-like wave and quasi 5 days wave
leading to a possible signature and interplay of
tides and planetary waves. Ground observations
(Vincent et al. 1998) as well as satellite observa-
tions (Burrage et al. 1995; McLandress et al. 1996)
showed the existence of a strong semiannual tidal
amplitude variation in the mesosphere.

The wavy structures observed in the mesosphere
night glow intensity variations have also been attri-
buted to the upward propagating gravity waves gene-
rated in the lower atmospheric regions (Krassovsky
1972; Hines and Tarasick 1987; Tarasick and Hines
1990; Tarasick and Shepherd 1992a, 1992b;
Fagundes et al. 1995; Nakamura et al. 1999) princi-
pally by deep convective activity of thunderstorm
(Brown et al. 2004; Hecht et al. 2004; Snively
and Pasko 2008; Vadas et al. 2009; Siingh et al.
2011, 2012) and orography effects (Tsuda et al.
1989; Eckermann and Preusse 1999). Recently Das
et al. (2011) have proposed heating effect during
dust storm also to be one of the probable genera-
tion mechanisms of gravity wave in the middle

atmosphere. Multispectral night glow emissions
recorded at low latitude stations showed the pres-
ence of gravity waves with periods of few hours
(Molina et al. 1985; Takahashi et al. 1985). Short
period (tens of minutes) and short horizontal wave-
length (tens of kms) gravity waves in the night glow
emissions have also been observed (Nakamura et al.
1999; Hecht et al. 2001; Hecht et al. 2004; Pautet
et al. 2005). Hecht et al. (2009) showed the pres-
ence of long period (∼2 hr) and large horizontal
wavelength (∼300–400 km) gravity waves as well
as short period (15–25 min) and small horizontal
wavelength (∼30–45 km) gravity waves in the air-
glow data over Alice Spring, Australia. The short
period waves might have been trapped/ducted by
thermal ducts and took several hours to reach
the mesopause region. The temperature profile
recorded by SABER (Sounding of Atmosphere
using Broadband Emission Radiometry) showed
the presence of thermal duct (Fadnavis et al.
2009). Winds critically control the formation of the
duct and hence variations in the wind direction
and amplitude may account for sporadic/short-
lived observations of the short and the long period
waves.

Recently, Narayanan et al. (2010) reported the
presence of large- and small-scale wave features
perpendicularly aligned to each other in the airglow
observations, which were associated with gravity
wave dynamics. The large scale wave with a hori-
zontal wavelength of ∼43 km propagated towards
the north–west at an apparent phase speed of
∼48 m/s. These waves near 88 km altitude expe-
rienced reflection when the background wind was
blowing in an opposite direction to that of wave
propagation. The small scale waves with periodi-
cities between 23 and 50 min were continuously
appearing and disappearing in different parts of
the sky within the field of view of the imaging
camera. The small scale waves could have been
generated locally by the convective instability (Li
et al. 2005a, 2005b). The smaller period (less than
12 hr) waves showed a strong wave dissipation
throughout the year except during equinox transi-
tions when a large (a factor of about 3–4) ampli-
tude growth was deduced from the analysis of
O2(0–1) and OH(6–2) atmospheric band emissions
(Taori et al. 2007).

In the middle atmosphere, the thermal struc-
ture has been attributed to turbulent heating asso-
ciated with gravity waves (Fadnavis et al. 2009)
and tidal waves (Dao et al. 1995). The thermal
structures so formed depend on wave parameters
(Fritts and Alexander 2003). As the wave para-
meters change from day-to-day and with latitude,
we make an attempt to study the characteris-
tic feature of waves present in the airglow emis-
sion intensity observed at Kolhapur, a low latitude
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station. The data for the years 2004, 2005 and 2007
are used to decipher any possible variation in wave
parameters with year. In the present paper, simul-
taneously measured nightglow emissions data of
OI 557.7 nm and OH band are analyzed to study
wavy structures in the mesosphere and the lower
thermosphere region. The analysis showed presence
of terdiurnal and sub-harmonics of tidal oscilla-
tions. Waves of shorter periods are also observed.
Using the observation of emissions from the two
different layers, we determine the horizontal wave-
length and velocity of vertical wave propagation.
Section 2 deals with observations and analysis of
the data. Results and discussions are given in
sections 3. Section 4 discusses tidal influences in
airglow emissions and brief summary and conclu-
sions are given in section 5.

2. Observations and analysis techniques

Regular observations of the night airglow emis-
sions, OI 557.7 nm and OH Meinel (683 and
692 nm) bands have been carried out at the low
latitude station Kolhapur (16.8◦N, 74.2◦E) on clear
and moonless nights since 1989 using filter scan-
ning photometer having five optical filters with
integration time of 30 s each. The half field of view
of the photometer is 7.25◦. Three Stepper Motors
control the movement of five filters in the merid-
ional and the azimuthal directions. Before starting
observations, the azimuthal position and the posi-
tion of particular filters were brought to a home
position. The scanning photometer was kept in
the north–south direction. Three optical sensors
were used for this purpose to get the home posi-
tion of the filters as well as the meridional and
the azimuthal positions. The fillers have a band
width of 1 nm and their temperature is controlled
by a temperature controller at 25◦C. The tempe-
rature coefficient of filter is 0.011 nm/◦C. At 25◦C,
the transmission efficiency of filters is ∼60–70%.
The filter scanning photometer consists of a photo-
multiplier tube (EMI 9658B) as a detector which
has a wide spectral response. Data from each filter
are stored in the digital form in the hard disk of a
PC through RS-232 port after amplification of the
signal from the photomultiplier tube (EMI 9658B).
The photometer was upgraded with a microproces-
sor for control and data acquisition and it takes
about 2.5 minutes to complete one sequence of
observations. The integration time of optical filters
is ∼30 s.

In the absence of a standard calibration source,
we have used relative intensities in arbitrary unit.
In order to study the wave features present in
the MLT region, we consider only those clear sky
days having more than 4 hours of continuous and

simultaneous observations of the OI 557.7 nm, and
OH Meinel band emissions. The analysis is carried
out for the period 2004–2007. For further analysis,
airglow intensity values are averaged at an interval
of 15 minutes. In this approach one can decipher
wavy structures with periods more than 30 minutes
(frequency ∼ 1/2dT). To retrieve long period waves
short period fluctuations are smoothed out. Long
period waves mostly represent tidal structures and
gravity waves originating from the troposphere and
stratosphere.

The presence of the short period and the long
period oscillations in the nocturnal airglow emis-
sions have been studied using various mathematical
filtering techniques (Daubechies 1988; Mukherjee
2003; Taori and Taylor 2010). In the present work,
we developed and modified mat lab program for
cosine wave fitting and used it for all dataset. From
the raw data mean intensity value is determined,
which is subtracted from the individual intensity
data and mean intensity deviations are obtained.
These intensity deviations are used for the cosine
wave fitting and further analysis. The periodicity
of waves and residuals are determined. Analyzing
residuals, the dominant harmonic wave periodi-
city and amplitudes are estimated. The phase
lags/leads are used to evaluate wave phase velocity.

3. Results and discussion

The nocturnal variations observed on 54 clear
nights in OI 557.7 nm and OH (7, 2) bands are
analyzed using the technique discussed above. The
total data length on individual nights is ∼9–
10 hours. Based on the previous studies, it is
assumed that the emission 557.7 nm comes from
the 97 km altitude and the OH band is emitted
at about 86 km altitude. To measure the wave
parameters obtained in the data, a simple best fit
wave perturbation cosine model is used (Taori et al.
2003, 2005) and periodicity, phase and amplitude
of the primary wave and its sub-harmonics are esti-
mated from the intensity of OI and OH emissions
independently. The modelled best fit solutions were
used to get the amplitude and phase information
of the waves present in the intensity data. From all
the plots it is evident that the data is dominated
by long period wave with short period oscillations
superposed on it.

Figure 1 shows the mean intensity deviations of
the emission lines (683, 692 nm) of OH band on
the nights of March 12–13, 2007 and April 11–
12, 2007 respectively. The wave signature (∼6 hr
period) seen in the mean intensity deviations could
be due to the solar atmospheric tides. It is noted
that the minimum mean intensity deviation value
is observed around mid-night at about 23–24 hr
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Figure 1. The mean intensity deviations of the OH emission
lines (683, 692 nm) with time in Indian Standard Time (IST)
observed at Kolhapur for the night of March 12–13, 2007 (upper
panel) and for the night of April 11–12, 2007 (lower panel).

and, the maximum mean intensity deviation occurs
at the evening and early morning hours. The error
bars show the range of airglow intensity under each
deviation peak. Same nature is also observed on
April 11–12, 2007. When we average the inten-
sity data for four days and plot its variation with
time, an interesting result emerges. Figure 2(a, b)
shows four days (12–15 March 2007) average inten-
sity variation with time for OI 557.7 nm and OH
(7, 2) lines respectively, where (a) plots the mean
intensity deviations of OI 557.7 nm (normalized
to their mean intensity values) and (b) plots the
mean intensity deviation of OH (normalized to
their mean intensity value). A best fit to OH data
is obtained. The periodicity from OI emission is
∼8.4 hr and that from OH line it comes out to be
8 hr. The residual (obtained by subtracting from
this long period oscillations) intensity deviations
for OI and OH are shown in figure 2(c) and (d)
respectively. The wave periods comes out to be 4.6
and 4.2 hr. Similarly figure 3(a, b) shows the aver-
age variation of intensity deviations for OI and OH
emissions on 10–13 April, 2007 and obtained period
is 8.4 hr for both the lines. However, the residual
mean intensity deviations shown in figure 3(c, d)
yield wave period 2.2 and 4 hr respectively for OI
and OH emissions.

The nocturnal mean intensity deviations of OI
557.7 nm and OH (7, 2) emissions for the night
of February 14–15, 2004 are shown in the upper
panel, along with the contributions from the first
and the second harmonics (9 and 4.5 hr periods)
in the lower panels of figure 4. Here it should be
noted that although we had data for 9 hr only, the
cosine fitting for the data yielded 9 hr of periodic-
ity. The harmonic analyses provide the information
of percentage contributions of different harmonics
in the total wave structure. In the present case,
the maximum percentage contribution comes from
the second harmonics in both OI and OH emis-
sions rather than the other harmonics. Because of
this we chose the second harmonics for the com-
parison of OH and OI 557.7 nm emissions. The
plots of two emissions are shown in the same figure
to get the location of amplitude minima of wavy
structure coming from the two different layers and
it is inferred that the longer period wave (∼9 hr)
propagates upward. The mean intensity averaging
process for 13–16 February, 2004, yield 8 hr period
for the OI emission and 9.6 hr for the OH emis-
sions. The wave period for the shorter wave comes
out to be 2.4 and 4.4 hr for the OI and OH emis-
sions respectively (table 1). Table 1 summarises the
results of analysis based on an average mean inten-
sity deviations of three to four nights depending
upon the availability of data.

The mean intensity deviations of OI 557.7 nm
and OH emissions for the night of February 15–16,
2004, along with the variation of amplitude of
different harmonics (9, 4.5 hr) are shown in figure 5.
The phase propagation for the first harmonic
seems to be downwards, whereas the second har-
monic shows an upward propagation. The data for
February 17–18, 2004, was analyzed (figure 6) and
phase propagation for both the first and the second
harmonics was found to be upward. The analysis
of average mean intensity deviations for the period
13–16 February and 17–20 February 2004 show
downward phase propagation both for the first and
the second harmonics. In normal condition, down-
ward wave propagation is not tenable. Such propa-
gation in localized region may be observed due to
the strong wind effect or the influence of multi-
wave mode coupling. Analysing OI and OH emis-
sion data, Fagundes et al. (1995) showed downward
phase propagation with velocity in the range 4–
10 ms−1 and vertical wavelength lying between 12
and 77 km. Meriwether et al. (1998) using Rayleigh
lidar observations showed a downward phase
propagation of 1 km/hr and explained it through a
localized mechanism involving the coupling of gra-
vity waves to the mesopause tidal structure. They
suggested that in a critical layer in which phase
speed of the propagating gravity wave matches the
combined speeds of background mean wind and
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Figure 2. Nocturnal variation of mean intensity deviation of the four days average of OI 557.7 nm and OH emissions from
12–15 March 2007 observations are plotted. The upper panels represent the mean deviations in intensity of (a) OI 557.7 nm
and (b) OH emission. The bottom panels represent intensity residuals of (c) OI 557.7 nm and (d) OH emission. Solid red
line curve in each plot shows the result of best-fit cosine model which is used to estimate the dominant wave periodicity,
amplitude and phase of waves present in the data. IST is the Indian Standard Time.

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

-0.2

-0.1

0.0

0.1

0.2

 20         22         24         02         04        06  

R
es

id
ua

l m
ea

n 
in

te
ns

ity
 

de
vi

at
io

ns

Time (IST)

(c)

 

 20         22         24         02         04        06  

Time (IST)

(d)

 

 

   Four days average
          OH intensity

April 10-13, 2007; Kolhapur

(b)

  20         22         24         02         04        06  

M
ea

n 
in

te
ns

ity
 d

ev
ia

tio
ns

 20         22         24         02         04        06  

 Four days average
        OI 557.7 nm intensity

(a) 

Figure 3. Same as figure 2, but for 10–13 April, 2007.
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Figure 4. The nocturnal mean intensity deviations of OI 557.7 nm and OH emissions for the night of February 14–15, 2004
observed at Kolhapur are plotted in the upper panel along with the contributions of the first and second harmonics (9 and
4.5 hr period) in the lower panels. IST is the Indian Standard Time.

the tidal mode, the convective/shear instability
causes wave energy to be transferred from grav-
ity wave to mean flow with consequent changes
in the tidal wind amplitude and phase. Recently,
clear evidence of planetary wave modes penetrat-
ing to OH layer heights at different times have been
observed (French and Klekociuk 2011) which may
interact with gravity waves and tidal modes and
change their amplitude and phase. However, in the
present case we could not find any clear signature of
planetary wave. Another possibility could be that
the waves may be moving vertically slow in the pre-
sence of strong wind. In that case very large ver-
tical wavelength should be observed. The vertical
wavelength in the present case lies between 46 and
113 km (see table 1). The vertical wavelength in
the presence of wind is inversely proportional to
the difference in phase velocity of the wave and the
projection of the background wind on the direc-
tion of wave propagation (Akmaev 2001). Thus the
vertical wavelength depends on wind direction and
magnitude of wind velocity.

Similarly, the mean intensity deviations of
OI 557.7 nm and OH emissions for the night of
February 10–11, 2005 are shown in the upper
panels of figure 7 along with the contributions from
the first and the second harmonics (9.4 and 4.6 hr

periods) in the lower panels. The first and the
second harmonics show downward phase propaga-
tion. Another example of the night airglow mean
intensity deviations for March 8–9, 2005 along with
the harmonic analysis is shown in figure 8.

Figure 9 shows the corresponding data for the
night of March 10–11, 2005. From the figure we
notice that the first harmonics propagate upward
and the second harmonics are seen to be opposite
to each other. From table 1, we find that the analy-
sis of average mean intensity data yield wave period
of the first harmonics between 3 and 12 hours.
The wave period of the second harmonics varied
between 2 and 4.6 hours. These waves may be
attributed to the tidal oscillations.

The vertical wavelength of the wave is computed
using the relation (Fagundes et al. 1995):

λ (z) = ΔD × (360/ΔΦ) (1)

where ΔD is the separation of the two layers
and ΔΦ is the phase difference between the waves
corresponding to the two emission lines. For waves
with periods much larger than the Brunt Vaisala
period, TB (say greater than 1 hr and less than a
few hours), the horizontal wave length λx and the
vertical wavelength λz of internal gravity waves are
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Table 1. Three/four days average intensity data are used to determine wave period, time shift and phase shift. These are
used to determine vertical velocity and vertical wavelengths which are tabulated below*.

Wave period Wave period

Date 557.7 (hr) OH (hr) ΔT (min) ΔΦ (deg) V(m/s) vw (km)

January 16–19, 2004 8.4 7.2 42.60 35.50 4.30 111.55

January 16–19, 2004 4.4 4.0 92.40 138.60 1.98 28.57

January 23–30, 2004 8.0 8.0 60.30 45.23 3.04 87.56

January 23–30, 2004 3.6 3.6 75.96 126.60 2.41 31.28

February 13–16, 2004 8.0 9.6 114.18 85.5 1.66 46.32

February 13–16, 2004 2.4 4.4 31.10 45.82 5.85 86.40

February 17–20, 2004 8.4 12.0 74.82 52.81 2.45 74.98

February 17–20, 2004 4.4 2.8 16.26 34.84 11.28 113.65

March 17–22, 2004 8.0 7.6 33.00 24.75 5.56 160.00

March 17–22, 2004 3.6 2.8 29.22 62.61 6.27 63.24

December 18–22, 2004 8.0 8.0 32.40 24.30 5.66 162.96

December 18–22, 2004 3.2 2.4 33.60 84.00 5.46 47.14

December 29–31, 2004 12.0 12.0 49.56 24.78 3.70 159.81

December 29–31, 2004 2.8 4.0 57.00 85.50 3.22 46.32

February 3–5, 2005 8.0 8.0 38.52 28.89 4.76 137.07

February 3–5, 2005 4.0 4.0 61.92 92.88 2.96 42.64

February 8–10, 2005 6.2 6.2 57.90 56.03 3.17 70.67

February 8–10, 2005 4.0 3.8 79.02 124.77 2.32 31.74

March 6–8, 2005 6.0 6.2 45.60 42.75 4.02 92.63

March 6–8, 2005 3.2 3.4 38.40 72.00 4.77 55.00

March 9–11, 2005 7.4 3.0 75.60 61.30 2.43 64.60

March 9–11, 2005 4.0 2.0 88.92 133.38 2.06 29.69

March 12–15, 2007 8.4 8.0 53.40 38.14 3.43 103.82

March 12–15, 2007 4.6 4.2 33.60 50.40 5.46 78.57

April 10–13, 2007 8.4 8.4 52.80 39.60 3.47 100.00

April 10–13, 2007 2.2 4.0 49.80 71.14 3.68 55.66

*All the parameters have been calculated from the method of Fagundes et al. (1995).
vw - Vertical wavelength.

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

Time (IST)

 Second harmonic of OI 557.7 nm
 Second harmonic of OH emission

February 15 -16, 2004; Kolhapur
    Harmonic analysis

F
irs

t h
ar

m
on

ic
 m

ea
n 

in
te

ns
ity

 
de

vi
at

io
ns

Time (IST)

 First harmonic of OI557.7 nm
 First harmonic of OH emission

OH Emission

M
ea

n 
in

te
ns

ity
 d

ev
ia

tio
ns

OI 557.7 nm

20 22 00 02 04 06

20 22 00 02 04 06

20 22 00 02 04 06

20 22 00 02 04 06
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Figure 6. Same as figure 4, but for February 17–18, 2004.
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Figure 7. Same as figure 4, but for February 10–11, 2005.
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Figure 8. Same as figure 4, but for March 8–9, 2005.
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Figure 9. Same as figure 4, but for March 10–11, 2005.
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related through the relation (Hines 1960; Fagundes
et al. 1995)

λx

λz

=
TW

TB

(2)

where TW is the wave period. This simple relation
changes for very long and very short period waves
(Fagundes et al. 1995). The time period (T in min)
and phase difference |ΔØ| obtained from the cross
correlation analysis of the two emission lines, OI
557.7 nm and OH (7, 2) have been used to com-
pute the vertical wavelength which varies between
approximately 28.7 and 113.6 km (short period, S)
wave propagation and it varies between 46.3 and
160.9 km (long period, L) wave propagation.
Values of the vertical wavelength show significant
day-to-day variability (∼28.5–160.9 km) with an
average value of ∼54.6 km for the short period
waves and ∼105 km for the long period wave. The
source of these waves may be in the troposphere
from which the gravity waves propagate upward
in the middle atmosphere. However, in situ exci-
tation at the airglow altitudes or ducting in the
upper middle atmosphere has also been suggested
by observations (Isler et al. 1997; Hecht et al.
2009) and numerical modelling (Fritts et al. 1997;
Hertzog et al. 2002).

The vertical wavelength obtained by several
investigators matches more or less with our
observed values. Reddi and Ramkumar (1997)
reported significantly higher values of the vertical
wavelength (>100 km) with meteor wind observa-
tions at Trivandrum. Taori et al. (2005) obtained
a large variability of vertical wavelength (∼26–
110 km) with the mean value ∼90 km which
resembles very well with our results. Contrary to
the large variability in the vertical wavelength of
tidal oscillations, Deepa et al. (2006) using Meteor
Radar data collected at Trivandrum showed the
vertical wavelength of the terdiurnal tide ∼16–
50 km during various seasons with the maxi-
mum amplitude at 95 km altitude, a result con-
sistent with the Meteor Radar measurement at
the high latitudes (Wu et al. 2005). These results
clearly show that airglow emission data yield
the vertical wavelength consistently higher values
than those derived from the Meteor Radar mea-
surements. To resolve this paradox, simultaneous
measurements using both the techniques are rec-
ommended. Moreover, in the analysis of airglow
data one considers emission of a particular line to
come from a fixed altitude, which itself may vary
due to variation in gas compositions caused by
various factors.

We have also computed the correlation coeffi-
cients (r) between OI 557.7 nm and OH (7, 2)

emission intensities for the short and the long wave
periods observed on 54 nights during the period of
2004–2007. It is noted that there is a high degree
of correlation between the two sets of data of two
emission lines. The correlation coefficient varies
between 0.763 and 0.872. The high values of corre-
lation also predict very high values of the vertical
wavelength.

The estimated phase velocities for the short
period waves between OH and OI 557.7 nm lay-
ers vary between 2.0 and 12.0 m/s and the time
lag varies between 16.26 to 92.4 min. The long
period wave phase velocities vary between 1.95
and 18.9 m/s and time lag varies between 32.4 and
114.18 min of the two emissions OI 557.7 nm and
OH. The data was dominated by a terdiurnal tide-
like wave. From table 1, it is noticed that the
average vertical velocity of 10 diurnal oscillations
is 3.4 m/s in 2004, 3.6 m/s in 2005 and 3.4 m/s
in 2007. The corresponding average vertical wave-
length for the years 2004, 2005 and 2007 is 107.2,
100.9 and 101.9 km, respectively. Thus the aver-
age vertical velocity and wavelength does not show
appreciable variation on yearly basis.

4. Tidal influences in airglow

Figure 10(a, b), shows the cosine fit curve of OI
557.7 nm and OH(7, 2) emissions for the night of
February 14–15, 2004. Solid line shows the best fit
curve along with the 15 min running average of
the mean airglow intensity deviations. It is seen
that the period of OI 557.7 nm intensity varia-
tion is ∼6 hr and OH emission period is ∼8 hr.
The residuals of mean intensity deviations shown
in the lower panels (c, d), which are consistently
spread around zero yielding the validation of cosine
model. Periodicity of tidal wave at OH emission is
more dominant than OI 557.7 nm emission. The
same results for February 15–16, 2004 are shown in
figure 11 where the solid line shows the cosine fit
curve. The period of OI 557.7 nm mean intensity
deviation is ∼4.5 hr and for the OH emission it is
∼8 hr. The residuals are plotted in the lower panels
(c, d). From the figure it is clearly seen the pres-
ence of small period waves in OI 557.7 nm data,
which is also evident from the plot of residuals.
Apart from tidal oscillations, short period oscilla-
tion observed in the OI 557.7 nm emissions could
be due to gravity wave. Figure 12(a, b) also shows
another example of terdiurnal oscillations in the
OI 557.7 nm and OH emissions data observed on
February 19–20, 2004.

Analyzing nightglow emission data, we have shown
the presence of terdiurnal (8 hr) tides during the
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Figure 10. Nocturnal variation of mean intensity deviations in OI 557.7 nm and OH emissions for the night of February
14–15, 2004 at Kolhapur are presented. The upper panels represent the mean deviations in intensity of (a) OI 557.7 nm
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intensity residuals are plotted in the lower panel (c, d). IST is the Indian Standard Time.
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Figure 11. Same as figure 10, but for February 15–16, 2004.
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Figure 12. Same as figure 10, but for February 19–20, 2004.

month of February, 2004. The observed difference
in the periodicity of OH and OI 557.7 nm emis-
sions may be due to the wave-mean wind inter-
action between these two altitudes. It is observed
from the plots that OH is having higher wave
activity during the observation period than OI
emissions. Thayaparan (1997) reported significant
contribution of 8 hr tide during the spring and
winter months and less contribution during the
summer and fall months. At mid-latitude, the
amplitude of 8 hr tides maximizes during spring
and fall months (Smith et al. 2000). Taori and
Taylor (2010) reported dominance of 8 hr tides at
the low latitude station Maui, Hawai during the
late winter time, which is close to our findings.
Using satellite based wind observations, Zhao et al.
(2005) showed a quite different seasonal pattern of
8 hr tides.

The simultaneous measurements of various air-
glow emissions emanating from different altitudes
in the atmosphere on a given night provide infor-
mation about the vertical propagation of waves
through the region. In these preliminary results
we have shown the presence of waves of different
periods (table 1) including the determinant terdi-
urnal tidal modes. Waves with periods of a few
hours could be gravity waves. Multispectral meso-
sphere nightglow emissions have reported gravity
waves with periods of a few hours propagating
through the upper atmosphere in the low latitude
regions (Molina et al. 1985; Takahashi et al. 1985;

Fagundes et al. 1995). Taori and Taylor (2010)
have also shown the presence of terdiurnal long
period waves and short period waves in the meso-
spheric O2 airglow emissions. The wave growth
or damping during propagation could not be
studied due to the limited availability of data and
the absence of multi-instrument observations. The
vertical upward propagation of wave suggests that
the source region may lie in the lower atmosphere,
i.e., in the troposphere or the stratosphere. The
source of these waves could be: (a) tidal oscil-
lation caused by absorption of solar radiation in
the lower atmosphere, (b) gravity waves gener-
ated by different processes in the troposphere, (c)
wave–wave or wave–tide interactions and develop-
ment of instabilities leading to generation and
amplification of waves, and (d) interaction between
different modes may also give rise to other modes.
For example, interaction between semi-diurnal and
diurnal tides may result into the generation of ter-
diurnal waves (Taylor et al. 1999). The interac-
tion of tidal wave with gravity waves also generates
new wave modes (Thayaparan et al. 1995). Non-
linear interactions between the stationary plane-
tary waves and migrating tides may also lead
to the diurnal tide (Hagan and Roble 2001)
and the semidiurnal tides (Angelats i Coll and
Forbes 2002). Using modelling studies (Roble and
Shepherd 1997; Yudin et al. 1998; Zhang et al.
2001), the perturbation in airglow emission have
also been linked to tidal oscillations.
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5. Summary and conclusions

The analysis of night time airglow emission lines
OH(7, 2) and OI 557.7 nm showed the presence
of terdiurnal and other sub-harmonics of solar
tidal oscillations. The observed short period waves
may be the manifestation of tidal wave interac-
tions amongst themselves or their interactions with
winds, gravity waves, planetary waves, etc. In the
present analysis, direction of propagation, wave-
length and wave periods are determined. The waves
with wave periods of a few hours usually should
have origin in the lower atmosphere and wave pro-
pagation direction upward. In a few cases we did
observe downward wave propagation. Such cases
may be the result of local strong wind effect which
modified the amplitude and phase of the waves. In
the absence of wind data, it is difficult to under-
stand the propagation mechanism. More data ana-
lysis and simulation studies with different direction
and magnitude of wind are required to resolve this
issue. Some of the results are:

• The vertical velocities of the long and short
period waves propagating between OH and OI
557.7 nm layers vary randomly on day-to-day
basis. On some days, velocity of the long period
wave is large and on the other day velocity of the
short period wave is large. No clear cut picture
could be obtained. Similar results were obtained
in 2004, 2005 and 2007.

• The 8 hr terdiurnal component of atmospheric
tides are often present in OH (7, 2), and OI
557.7 nm emissions. The average velocity and
wavelength did not show appreciable change dur-
ing the observation period from 2004 to 2007.
The observed difference in periodicity of the wave
may be due to the wave mean wind interactions
between the two airglow layers.

• Good correlations are found between the OH and
OI 557.7 nm emission intensity on most of the
nights for the short period and the long period
variations.

• The wave–wave interactions could be seen in OH
emission layer.

In the present study, we have taken the height of
OH and OI emission layer to be 86 and 97 km,
respectively, which may change from time to time
due to altitude variation in atmospheric con-
stituents. The variation will change the derived
wave parameters. In the present study we could not
decipher the origin of short period waves. Addi-
tional observations using different techniques are
required to explain the wavy structures observed in
the airglow emission data. Hence, further long term
multi-instrument observations (using ground-based
and space-based), theoretical studies and modelling

are required to deal with this less explored and the
most important region of the atmosphere.
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