17 research outputs found

    Electrospun-Fibrous-Architecture-Mediated Non-Viral Gene Therapy Drug Delivery in Regenerative Medicine

    No full text
    Gene-based therapy represents the latest advancement in medical biotechnology. The principle behind this innovative approach is to introduce genetic material into specific cells and tissues to stimulate or inhibit key signaling pathways. Although enormous progress has been achieved in the field of gene-based therapy, challenges connected to some physiological impediments (e.g., low stability or the inability to pass the cell membrane and to transport to the desired intracellular compartments) still obstruct the exploitation of its full potential in clinical practices. The integration of gene delivery technologies with electrospun fibrous architectures represents a potent strategy that may tackle the problems of stability and local gene delivery, being capable to promote a controlled and proficient release and expression of therapeutic genes in the targeted cells, improving the therapeutic outcomes. This review aims to outline the impact of electrospun-fibrous-architecture-mediated gene therapy drug delivery, and it emphatically discusses the latest advancements in their formulation and the therapeutic outcomes of these systems in different fields of regenerative medicine, along with the main challenges faced towards the translation of promising academic results into tangible products with clinical application

    Mechanical Properties of Polymer-Based Blanks for Machined Dental Restorations

    No full text
    The tremendous technological and dental material progress led to a progressive advancement of treatment technologies and materials in restorative dentistry and prosthodontics. In this approach, CAD/CAM restorations have proven to be valuable restorative dental materials in both provisional and definitive restoration, owing to multifarious design, improved and highly tunable mechanical, physical and morphological properties. Thus far, the dentistry market offers a wide range of CAD/CAM restorative dental materials with highly sophisticated design and proper characteristics for a particular clinical problem or multiple dentistry purposes. The main goal of this research study was to comparatively investigate the micro-mechanical properties of various CAD/CAM restorations, which are presented on the market and used in clinical dentistry. Among the investigated dental specimens, hybrid ceramic-based CAD/CAM presented the highest micro-mechanical properties, followed by CAD/CAM PMMA-graphene, while the lowest micro-mechanical features were registered for CAD/CAM multilayered PMMA

    A Comparative Study of the Impact of the Bleaching Method on the Production and Characterization of Cotton-Origin Nanocrystalline Cellulose by Acid and Enzymatic Hydrolysis

    No full text
    Due to environmental concerns, as well as its exceptional physical and mechanical capabilities, biodegradability, and optical and barrier qualities, nanocellulose has drawn a lot of interest as a source of reinforcing materials that are nanometer sized. This article focuses on how to manufacture cellulose nanomaterials from cotton by using different types of acids such as H2SO4 and HCI in different concentrations and in the presence of enzymes such as cellulase and xylanase. Two different types of bleaching methods were used before acid and enzyme hydrolysis. In the first method, cellulose was extracted by bleaching the cotton with H2O2. In the second method, NaOCl was utilized. For both methods, different concentrations of acids and enzymes were used to isolate nanocellulose materials, cellulose nanocrystals (CNC), and cellulose nanofibrils (CNF) at different temperatures. All obtained nanocellulose materials were analyzed through different techniques such as FT-IR, Zeta potentials, DLS, Raman spectroscopy, TGA, DSC, XRD, and SEM. The characteristic signals related to cellulose nanocrystals (CNC) were confirmed with the aid of Raman and FT-IR spectroscopy. According to the XRD results, the samples’ crystallinity percentages range from 54.1% to 63.2%. The SEM image showed that long fibers break down into small fibers and needle-like features are seen on the surface of the fibers. Using different types of bleaching has no significant effect on the thermal stability of samples. The results demonstrate a successful method for synthesizing cellulose nanofibrils (CNF) from cotton through enzymatic hydrolysis, but the results also demonstrated that the choice of bleaching method has a significant impact on the hydrodynamic properties and crystallinity of both CNC and CNF samples

    Novel PEG-Modified Hybrid PLGA-Vegetable Oils Nanostructured Carriers for Improving Performances of Indomethacin Delivery

    No full text
    The purpose of this work was to more exhaustively study the influence of nanocarrier matrix composition and also the polyethylene glycol (PEG)-modified surface on the performances of formulations as lipophilic drug delivery systems. Poly (d,l-lactide-co-glycolide), two vegetable oils (Nigella sativa oil and Echium oil) and indomethacin were employed to prepare novel PEG-coated nanocarriers through emulsion solvent evaporation method. The surface modification was achieved by physical PEG adsorption (in the post-production step). Transmission electron microscopy (TEM) nanographs highlighted the core-shell structure of hybrid formulations while scanning electron microscopy (SEM) images showed no obvious morphological changes after PEG adsorption. Drug loading (DL) and entrapment efficiency (EE) varied from 4.6% to 16.4% and 28.7% to 61.4%, solely depending on the type of polymeric matrix. The oil dispersion within hybrid matrix determined a more amorphous structure, as was emphasized by differential scanning calorimetry (DSC) investigations. The release studies highlighted the oil effect upon the ability of nanocarrier to discharge in a more sustained manner the encapsulated drug. Among the kinetic models employed, the Weibull and Korsmeyer-Peppas models showed the better fit (R2 = 0.999 and 0.981) with n < 0.43 indicating a Fickian type release pattern. According to cytotoxic assessment the PEG presence on the surface increased the cellular viability with ~1.5 times as compared to uncoated formulations

    Electrospun Nanofibrous Membranes Based on Citric Acid-Functionalized Chitosan Containing rGO-TEPA with Potential Application in Wound Dressings

    No full text
    The present research work is focused on the design and investigation of electrospun composite membranes based on citric acid-functionalized chitosan (CsA) containing reduced graphene oxide-tetraethylene pentamine (CsA/rGO-TEPA) as materials with opportune bio-properties for applications in wound dressings. The covalent functionalization of chitosan (CS) with citric acid (CA) was achieved through the EDC/NHS coupling system and was checked by 1H-NMR spectroscopy and FTIR spectrometry. The mixtures to be electrospun were formulated by adding three concentrations of rGO-TEPA into the 1/1 (w/w) CsA/poly (ethylene oxide) (PEO) solution. The effect of rGO-TEPA concentration on the morphology, wettability, thermal stability, cytocompatibility, cytotoxicity, and anti-biofilm activity of the nanofibrous membranes was extensively investigated. FTIR and Raman results confirmed the covalent and non-covalent interactions that appeared between the system’s compounds, and the exfoliation of rGO-TEPA sheets within the CsA in the presence of PEO (CsA/P) polymer matrix, respectively. SEM analysis emphasized the nanofibrous architecture of membranes and the presence of rGO-TEPA sheets entrapped into the CsA nanofiber structure. The MTT cellular viability assay showed a good cytocompatibility with the highest level of cell development and proliferation registered for the CsA/P composite nanofibrous membrane with 0.250 wt.% rGO-TEPA. The designed nanofibrous membranes could have potential applications in wound dressings, given that they showed a good anti-biofilm activity against Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacterial strains

    3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering

    No full text
    The development of materials for 3D printing adapted for tissue engineering represents one of the main concerns nowadays. Our aim was to obtain suitable 3D-printed scaffolds based on methacrylated gelatin (GelMA). In this respect, three degrees of GelMA methacrylation, three different concentrations of GelMA (10%, 20%, and 30%), and also two concentrations of photoinitiator (I-2959) (0.5% and 1%) were explored to develop proper GelMA hydrogel ink formulations to be used in the 3D printing process. Afterward, all these GelMA hydrogel-based inks/3D-printed scaffolds were characterized structurally, mechanically, and morphologically. The presence of methacryloyl groups bounded to the surface of GelMA was confirmed by FTIR and 1H-NMR analyses. The methacrylation degree influenced the value of the isoelectric point that decreased with the GelMA methacrylation degree. A greater concentration of photoinitiator influenced the hydrophilicity of the polymer as proved using contact angle and swelling studies because of the new bonds resulting after the photocrosslinking stage. According to the mechanical tests, better mechanical properties were obtained in the presence of the 1% initiator. Circular dichroism analyses demonstrated that the secondary structure of gelatin remained unaffected during the methacrylation process, thus being suitable for biological applications

    3D-Printed Gelatin Methacryloyl-Based Scaffolds with Potential Application in Tissue Engineering

    No full text
    The development of materials for 3D printing adapted for tissue engineering represents one of the main concerns nowadays. Our aim was to obtain suitable 3D-printed scaffolds based on methacrylated gelatin (GelMA). In this respect, three degrees of GelMA methacrylation, three different concentrations of GelMA (10%, 20%, and 30%), and also two concentrations of photoinitiator (I-2959) (0.5% and 1%) were explored to develop proper GelMA hydrogel ink formulations to be used in the 3D printing process. Afterward, all these GelMA hydrogel-based inks/3D-printed scaffolds were characterized structurally, mechanically, and morphologically. The presence of methacryloyl groups bounded to the surface of GelMA was confirmed by FTIR and 1H-NMR analyses. The methacrylation degree influenced the value of the isoelectric point that decreased with the GelMA methacrylation degree. A greater concentration of photoinitiator influenced the hydrophilicity of the polymer as proved using contact angle and swelling studies because of the new bonds resulting after the photocrosslinking stage. According to the mechanical tests, better mechanical properties were obtained in the presence of the 1% initiator. Circular dichroism analyses demonstrated that the secondary structure of gelatin remained unaffected during the methacrylation process, thus being suitable for biological applications

    Influence of Air-Barrier and Curing Light Distance on Conversion and Micro-Hardness of Dental Polymeric Materials

    No full text
    This study aims to assess the conversion degree and hardness behavior of two new commercial dental restorative composites that have been submitted to light curing in different environments (air and glycerin, respectively) at various distances from the light source (1 to 5 mm) and to better understand the influence of the preparation conditions of the restorative materials. Through FT-IR spectrometry, the crosslinking degree of the commercial restorative materials have been investigated and different conversion values were obtained (from ~17% to ~90%) but more importantly, it was shown that the polymerization environment exhibits a significant influence on the crosslinking degree of the resin-based composites especially for obtaining degrees of higher polymerization. Additionally, the mechanical properties of the restorative materials were studied using the nanoindentation technique showing that the nano-hardness behavior is strongly influenced not only by the polymerization lamp position, but also by the chemical structure of the materials and polymerization conditions. Thus, the nanoindentation results showed that the highest nano-hardness values (~0.86 GPa) were obtained in the case of the flowable C3 composite that contains BisEMA and UDMA as a polymerizable organic matrix when crosslinked at 1 mm distance from the curing lamp using glycerin as an oxygen-inhibitor layer
    corecore