118 research outputs found

    CFD Analysis of Inlet Flow Distortions on an Axial Fan

    Get PDF

    Heat Transfer Analysis of Damaged Shrouded High-Pressure Turbine Rotor Blades

    Get PDF
    Due to the increasingly high turbine inlet temperatures, heat transfer analysis is now, more than ever, a vital part of the design and optimization of high-pressure turbine rotor blades of a modern jet engine. The present study aimed to find out how shape deviation and in-service deterioration affect heat exchange patterns on the rotor blade. The rotor geometries used for this analysis are represented by a set of high-resolution 3D structured light scans of blades with the same number of in-service hours. An automatic meshing technique was employed to generate high-resolution meshes directly on the scanned rotor geometries, which captured all the surface features with high fidelity. Steady-state 3D RANS flow simulations with a k-ω SST turbulence model were conducted on a one-and-a-half stage computational domain of the scanned geometries. First, the distribution of the heat transfer coefficient was calculated for each blade; then, a correlation was sought between the heat transfer coefficient and parametrized shape deviation, to assess the impact of each parameter on HTC levels

    An investigation of higher-order multi-objective optimisation for 3D aerodynamic shape design

    Get PDF
    We investigate the performance of different variants of a suitably tailored Tabu Search optimisation algorithm on a higher-order design problem. We consider four objective func- tions to describe the performance of a compressor stator row, subject to a number of equality and inequality constraints. The same design problem has been previously in- vestigated through single-, bi- and three-objective optimisation studies. However, in this study we explore the capabilities of enhanced variants of our Multi-objective Tabu Search (MOTS) optimisation algorithm in the context of detailed 3D aerodynamic shape design. It is shown that with these enhancements to the local search of the MOTS algorithm we can achieve a rapid exploration of complicated design spaces, but there is a trade-off be- tween speed and the quality of the trade-off surface found. Rapidly explored design spaces reveal the extremes of the objective functions, but the compromise optimum areas are not very well explored. However, there are ways to adapt the behaviour of the optimiser and maintain both a very efficient rate of progress towards the global optimum Pareto front and a healthy number of design configurations lying on the trade-off surface and exploring the compromise optimum regions. These compromise solutions almost always represent the best qualitative balance between the objectives under consideration. Such enhancements to the effectiveness of design space exploration make engineering design optimisation with multiple objectives and robustness criteria ever more practicable and attractive for modern advanced engineering design. Finally, new research questions are addressed that highlight the trade-offs between intelligence in optimisation algorithms and acquisition of qualita- tive information through computational engineering design processes that reveal patterns and relations between design parameters and objective functions, but also speed versus optimum quality

    EXPERIMENTAL ANALYSIS OF THE THREE DIMENSIONAL FLOW IN A WELLS TURBINE ROTOR

    Get PDF
    An experimental investigation of the local flow field in a Wells turbine has been conducted, in order to produce a detailed analysis of the aerodynamic characteristics of the rotor and support the search for optimized solutions. The measurements have been conducted with a hot-wire anemometer (HWA) probe, reconstructing the local three-dimensional flow field both upstream and downstream of a small-scale Wells turbine. The multi-rotation technique has been applied to measure the three velocity components of the flow field for a fixed operating condition. The results of the investigation show the local flow structures along a blade pitch, highlighting the location and radial extension of the vortices which interact with the clean flow, thus degrading the turbine’s overall performance. Some peculiarities of this turbine have also been shown, and need to be considered in order to propose modified solutions to improve its performance

    On the Hysteretic Behaviour of Wells Turbines

    Get PDF
    The Wells turbine is a self-rectifying axial flow turbine employed in Oscillating Water Column systems to convert low-pressure airflow into mechanical energy. A number of studies highlighted a variation in turbine performance between acceleration and deceleration phases, generally ascribed to the interaction between blade trailing edge vortices and blade boundary layer. This explaination is in opposition with the large existing literature on rapidly pitching airfoils and wings, where it is generally accepted that a hysteretic behavior can be appreciated only at non-dimensional frequencies significantly larger than the ones typically found in Wells turbine. This work presents a critical re-examination of the phenomenon and a new analysis of some of the test cases originally used to explain its origin. The results demonstrate how the behavior of a Wells turbine is not dissimilar to that of an airfoil pitching at very low reduced frequencies and that the causes of the alleged hysteresis are in a different phenomenon

    Multi-Objective Optimisation of Aero-Engine Compressors

    Get PDF
    The design of a new aero-engine compressor is a complex task: design objectives are almost always conflicting, the design space is large, nonlinear and highly constrained, and the effects of some geometrical changes can be difficult to predict. Computational fluid dynamics (CFD) is now widely used in real-world applications and especially in the design of turbomachinery. However, the large design space and the time required for the numerical simulation of the whole turbomachine make the use of CFD in the early phases of the design process infeasible: preliminary design relies on a number of physical and empirical relations, still quite similar to those used in the early history of turbomachinery design. In this study, 87 independent parameters were used to define the geometry of a 7-stage compressor, the performance of which was evaluated using proprietary design codes for mean-line, multi-stage analysis. The effects on efficiency and surge margin of changing 44 design variables were analysed and their optimal values found by means of deterministic (gradient-based) and meta-heuristic (Tabu Search [TS]) optimisation methods. The results show clearly how the use of meta-heuristic optimisation tools can improve the preliminary design of turbomachinery, allowing a more thorough but still rapid exploration of the design space to identify the most promising regions that will then be verified and further analysed with higher fidelity tools. The results also reveal the impact of introducing various constraints into the design process, highlighting the effects of design decomposition

    Multi-Fidelity Modelling of the Effect of Combustor Traverse on High-Pressure Turbine Temperatures

    Get PDF
    As turbine entry temperatures of modern jet engines continue to increase, additional thermal stresses are introduced onto the high-pressure turbine rotors, which are already burdened by substantial levels of centrifugal and gas loads. Usually, for modern turbofan engines, the temperature distribution upstream of the high-pressure stator is characterized by a series of high-temperature regions, determined by the circumferential arrangement of the combustor burners. The position of these high-temperature regions, both radially and circumferentially in relation to the high-pressure stator arrangement, can have a strong impact on their subsequent migration through the high-pressure stage. Therefore, for a given amount of thermal power entering the turbine, a significant reduction in maximum rotor temperatures can be achieved by adjusting the inlet temperature distribution. This paper is aimed at mitigating the maximum surface temperatures on a high-pressure turbine rotor from a modern commercial turbofan engine by conducting a parametric analysis and optimization of the inlet temperature field. The parameters considered for this study are the circumferential position of the high-temperature spots, and the overall bias of the temperature distribution in the radial direction. High-fidelity unsteady (phase-lag) and conjugate heat transfer simulations are performed to evaluate the effects of inlet clocking and radial bias on rotor metal temperatures. The optimized inlet distribution achieved a 100 K reduction in peak high-pressure rotor temperatures and 7.5% lower peak temperatures on the high-pressure stator vanes. Furthermore, the optimized temperature distribution is also characterized by a significantly more uniform heat load allocation on the stator vanes, when compared to the baseline one

    Discussion on “Influence of incoming wave conditions on the hysteretic behavior of an oscillating water column system for wave energy conversion” by J. Peng, C. Hu and C. Yang

    Get PDF
    Recently, Peng, Hu and Yang presented a lumped parameter model to quantify the hysteresis in Oscillating Water Column systems. We noticed that the model they presented is remarkably similar to the one we introduced in some of our previously published works. The similarity extends not only to the assumptions, derivation and methodology used to obtain an analytical solution, but even to the almost totality of the symbols chosen for the many model variables. None of the papers where we introduced the model and its solution were referenced by Peng and his coauthors, who therefore claimed for themselves the credit due to the original authors of the model. Peng and his coauthors have then applied the lumped parameter model to a test case different from the one that we had validated it on. This gives further confirmation of the validity of the model, which we feel the responsibility to reestablish the scientific property of
    • …
    corecore