36 research outputs found

    Emergence of apoptotic fat cells after completion of antibiotic therapy.

    No full text
    <p>Histological sections were stained by immunohistochemistry with anti-CC3 antibodies and were counterstained with Haematoxylin. Infiltrated necrotic areas (A, C, E) and fat cell layers (B, D, F) of the subcutaneous tissues are displayed. Before treatment some of the infiltrating cells showed CC3 staining (A). No staining was observed in the subcutaneous layer (B). During treatment (C, D) only very few cells showed CC3 staining. After treatment substantial numbers of infiltrating cells were CC3-positive (E) and in addition larger numbers of CC3-positive fat cells were found (F).</p

    Increase of Cytokeratin 16 expression by keratinocytes during antibiotic therapy.

    No full text
    <p>Histological sections were stained by immunohistochemistry with an anti-Cytokeratin 16 antibodies and were counterstained with Haematoxylin. While healthy skin was completely devoid of Cytokeratin 16 staining (A1), some staining was observed (A2) in the epidermal layer of untreated BU lesions (T1). Staining intensity and epidermal thickness increased in samples collected during (T2) and after completion (T3) of antibiotic therapy (A3, A4). After completion of therapy (T3) heterogeneous staining (B, Overview), with some areas of the epidermal layer showing much weaker Cytokeratin 16 staining (Region 1) than others (Region 2) was observed.</p

    Increased expression of the ECM proteins tenascin, fibronectin and pro-collagen 1 in healing BU lesions.

    No full text
    <p>Serial histological sections were stained with antibodies against αSMA and the ECM proteins tenascin, fibronectin and pro-collagen 1 and counterstained with Haematoxylin. Panel A represents a typical lesion before commencement of antibiotic therapy (T1) and Panel B and C typical tissue specimens from two patients after completion of therapy (T3). Whereas no or only weak staining for αSMA, tenascin, fibronectin and pro-collagen 1 was observed before therapy (A1–A4), tissues turned strongly positive for all four markers after completion of treatment (B1–B4 and C1–C4). Staining of ECM proteins was most prominent in areas containing many αSMA positive myofibroblasts.</p

    Characteristics of the 12 Buruli ulcer plaque patients.

    No full text
    <p>*the mean duration from start of treatment to ulceration was 30 days (11–53 days) for those five patients for which beginning of ulceration could be exactly recorded.</p

    Characteristic histopathological features of tissue samples taken 26–34 days after start of antibiotic treatment.

    No full text
    <p>Histological sections were stained either with Haematoxylin-Eosin (HE) (A, B, H), Ziehl-Neelsen (counterstain methylenblue) (ZN) (C) or with antibodies against cell surface or cytoplasmic markers (counterstain haematoxylin) (D–G, I). A: Punch biopsy with large necrotic areas, fat cell ghosts and oedema but relatively intact epidermis and dermis. B: Higher magnification of necrotic tissue with large numbers of fat cell ghosts. C: Small numbers of intra and extracellular beaded AFB. D: N-elastase positive intact neutrophils were rare. E: More intact CD68 positive macrophages and F: CD3 positive T-cells were observed in the dermal tissue. Additionally, small CD20 positive B-cell cluster (G), few granulomas (H) and langhans giant cells (I) were found in only few of the samples.</p

    Characteristic histopathological features of tissue surgically excised to support wound healing.

    No full text
    <p>Histological sections were stained either with Haematoxylin-Eosin (HE) (A–C), Ziehl-Neelsen (counterstain methylenblue) (ZN) (L) or with antibodies against cell surface or cytoplasmic markers (counterstain haematoxylin) (D–K). A: Overview over an excised tissue specimen still harbouring large necrotic areas with fat cell ghosts and oedema. B: Overview over an excised tissue specimen presenting with mixed infiltration in the former necrotic region. C: Necrosis and oedema of the dermis of an excised non-ulcerative lesion. D: CD14 (D1) and N-elastase (D2) staining revealing a clear border between infiltration with intact CD14 positive macrophages (D1) and neutrophilic debris inside the necrotic area (D2). Infiltrated tissue areas contained large numbers of CD68 positive macrophages (E) and large numbers of CD3 positive cells (F). These belonged mainly of the CD8 (G) and not of the CD4 (H) subset. Langhans and foreign body giant cells (I) and B-cell cluster (J) were present in the majority of the samples. Accumulations of N-elastase positive cells (K) were occasionally found. AFB were rare, had a beaded appearance and intracellular location (L).</p

    Characteristic histopathological features of tissue samples taken before start of antibiotic treatment.

    No full text
    <p>Histological sections were stained either with Haematoxylin-Eosin (HE) (A, C–E), Ziehl-Neelsen (counterstain methylenblue) (ZN) (B) or with antibodies against cell surface or cytoplasmic markers (counterstain haematoxylin) (F–H). A: Punch biopsy with large necrotic areas, fat cell ghosts and oedema but relatively intact epidermis and dermis. B: a band of extracellular AFBs is present in a deep layer of the necrotic subcutis. C: epidermis and dermis. D: necrotic region with fat cell ghosts. E: few infiltrating cells around a blood vessel. F: N-elastase staining revealed the presence of neutrophilic debris inside the necrotic regions. G: few intact neutrophils and H: CD68 positive infiltrating macrophages were found.</p
    corecore