824 research outputs found

    Evidence for anisotropy in the distribution of short-lived gamma-ray bursts

    Get PDF
    Measurements of the two-point angular correlation function w(\theta) for 407 short gamma-ray bursts collected in the Current BATSE Catalogue reveal a ~2 \sigma deviation from isotropy on angular scales \theta ~ 2-4 degrees. Such an anisotropy is not observed in the distribution of long gamma-ray bursts and hints to the presence of repeated bursts for up to ~13% of the sources under exam. However, the available data cannot exclude the signal as due to the presence of large-scale structure. Under this assumption, the amplitude of the observed w(\theta) is compatible with those derived for different populations of galaxies up to redshifts ~0.5, result that suggests short gamma-ray bursts to be relatively local sources.Comment: 5 pages, 4 figures, submitted to MNRA

    Time Resolved GRB Spectroscopy

    Get PDF
    We present the main results of a study of time-resolved spectra of 43 intense GRBs detected by BATSE. We considered the 4-parameter Band model and the Optically Thin Synchrotron Shock model (OTSSM). We find that the large majority of time-resolved spectra of GRBs are in remarkable agreement with the OTSSM. However, about 15 % of initial GRB pulses show an apparent low-energy photon suppression. This phenomenon indicates that complex radiative conditions modifying optically thin emission may occur during the initial phases of some GRBs.Comment: 5 pages, 3 figures, Paper presented at the 5th Huntsville Symposium, Huntsville (Alabama) Oct. 199

    On the correlation of Short Gamma--Ray Bursts and Clusters of galaxies

    Get PDF
    We cross correlate Gamma--Ray Bursts and X--Ray selected clusters of galaxies at z\leq0.45. We find a positive 2\sigma signal for the angular cross--correlation function w_{bc}(\theta) on scales \theta\leq 3 deg between short GRBs and clusters. Conversely, no correlation is found between clusters and the population of long GRBs. The comparison with the cluster autocorrelation function shows that short GRBs do not trace the cluster distribution as not all short GRBs are found in clusters. A higher signal in w_{bc}(\theta) is found if we only consider the cluster population up to z=0.1. By comparing the short burst autocorrelation function with model predictions we then constrain short bursts to mostly originate within \sim 270 Mpc (i.e. z\leq 0.06). Our analysis also reveals that short GRBs are better correlated with ``normal'' galaxies. The double compact object merger model for short GRBs would associate them preferentially to early--type galaxies but the present statistics do not allow us to exclude that at least a fraction of these events might also take place in late--type galaxies, in agreement with recent evidences.Comment: 5 pages, 5 figures, accepted for publication in MNRA

    General properties of overlap probability distributions in disordered spin systems. Toward Parisi ultrametricity

    Full text link
    For a very general class of probability distributions in disordered Ising spin systems, in the thermodynamical limit, we prove the following property for overlaps among real replicas. Consider the overlaps among s replicas. Add one replica s+1. Then, the overlap q(a,s+1) between one of the first s replicas, let us say a, and the added s+1 is either independent of the former ones, or it is identical to one of the overlaps q(a,b), with b running among the first s replicas, excluding a. Each of these cases has equal probability 1/s.Comment: LaTeX2e, 11 pages. Submitted to Journal of Physics A: Mathematical and General. Also available at http://rerumnatura.zool.su.se/stefano/ms/ghigu.p

    Evidence of two spectral breaks in the prompt emission of gamma ray bursts

    Get PDF
    The long-lasting tension between the observed spectra of gamma ray bursts (GRBs) and the predicted synchrotron emission spectrum might be solved if electrons do not completely cool. Evidence for incomplete cooling was recently found in Swift GRBs with prompt observations down to 0.1 keV and in one bright Fermi burst, GRB 160625B. Here we systematically search for evidence of incomplete cooling in the spectra of the ten brightest short and long GRBs observed by Fermi. We find that in 8/10 long GRBs there is compelling evidence of a low energy break (below the peak energy) and good agreement with the photon indices of the synchrotron spectrum (respectively -2/3 and -3/2 below the break and between the break and the peak energy). Interestingly, none of the ten short GRBs analysed shows a break but the low energy spectral slope is consistent with -2/3. In a standard scenario, these results imply a very low magnetic field in the emission region (B' ~ 10 G in the comoving frame), at odd with expectations.Comment: 14 pages, 15 figures, in press, accepted for publication in A&

    The evolution of signal form: Effects of learned versus inherited recognition

    Get PDF
    Organisms can learn by individual experience to recognize relevant stimuli in the environment or they can genetically inherit this ability from their parents. Here, we ask how these two modes of acquisition affect signal evolution, focusing in particular on the exaggeration and cost of signals. We argue first, that faster learning by individual receivers cannot be a driving force for the evolution of exaggerated and costly signals unless signal senders are related or the same receiver and sender meet repeatedly. We argue instead that biases in receivers’ recognition mechanisms can promote the evolution of costly exaggeration in signals. We provide support for this hypothesis by simulating coevolution between senders and receivers, using artificial neural networks as a model of receivers’ recognition mechanisms. We analyse the joint effects of receiver biases, signal cost and mode of acquisition, investigating the circumstances under which learned recognition gives rise to more exaggerated signals than inherited recognition. We conclude the paper by discussing the relevance of our results to a number of biological scenarios

    Long Gamma-Ray Bursts as standard candles

    Get PDF
    As soon as it was realized that long GRBs lie at cosmological distances, attempts have been made to use them as cosmological probes. Besides their use as lighthouses, a task that presents mainly the technological challenge of a rapid deep high resolution follow-up, researchers attempted to find the Holy Grail: a way to create a standard candle from GRB observables. We discuss here the attempts and the discovery of the Ghirlanda correlation, to date the best method to standardize the GRB candle. Together with discussing the promises of this method, we will underline the open issues, the required calibrations and how to understand them and keep them under control. Even though GRB cosmology is a field in its infancy, ongoing work and studies will clarify soon if and how GRBs will be able to keep up to the promises.Comment: To appear in the proceedings of the 16th Annual October Astrophysics Conference in Maryland "Gamma Ray Bursts in the Swift Era", eds. S. Holt, N. Gehrels & J. Nouse
    • …
    corecore