4 research outputs found
H-infinity robust displacement velocity control of a UAV based upon optical flow estimation
[EN] The design of a displacement velocity controller is presented for a six rotor aerial vehicle. H–infinity control is proposed in order to achieve robust performance in presence of dynamic model uncertainty. It is assumed that a considerable amount of uncertainty is due to time delays introduced by the algorithms employed. The estimation of the vehicle’s displacement velocity is carried out on-board through an optical flow sensor implemented employing a camera and a high level processor a s w ell a s t he H–infinity controller. Through experimental data, the system’s identification procedure used to obtain a description of the plant as a family of models with global dynamic uncertainty is also presented as part of the design process. The implemented optical flow estimation methods are also presented as well as the tuning procedures employed which may affect the results of the system’s identification and the control performance. Experimental results are presented with details regarding the implementation phase.[ES] Se presenta el diseño del control para la velocidad de desplazamiento de un vehículo aéreo de seis rotores. La técnica de diseño utilizada es el control óptimo en H–infinito con el objetivo de conseguir rendimiento robusto ante la incertidumbre en el modelo de la dinámica de la velocidad de desplazamiento. Se considera que buena parte de la incertidumbre es atribuible a retardos de tiempo inciertos que introduce el propio algoritmo que se utiliza para estimar la velocidad de desplazamiento. El vehículo realiza a bordo la estimación de esta última a través de un sensor de flujo óptico implementado con una cámara y un procesador de alto nivel en el cual además se implementa la ley de control. Junto con el diseño del control, se muestra el procedimiento de identificación de sistemas utilizado para conseguir una descripción de la dinámica a través de una familia de plantas con incertidumbre dinámica global a través de la toma de datos experimentales. Finalmente se exhiben resultados experimentales con la implementación del sistema de control completo. Los autores agradecen la tarea de los revisores del trabajo. Sus observaciones y correcciones han contribuido a la introducción de significativas mejoras en el mismo.
Este trabajo ha sido realizado parcialmente gracias al apoyo de la Universidad de Buenos Aires a través del proyecto UBA-PDE2019 y de la Universidad Tecnológica Nacional a través del proyecto CCUT-7731TC.Ghersin, A.; Giribet, J.; Luiso, J.; Tournour, A. (2021). Control robusto H-infinito para la velocidad de desplazamiento de un UAV en base a estimación de flujo óptico. Revista Iberoamericana de Automática e Informática industrial. 18(3):242-253. https://doi.org/10.4995/riai.2021.14370OJS242253183Armesto, L., Tornero, J., Vincze, M., 06 2007. Fast ego-motion estimation with multi-rate fusion of inertial and vision. I. J. Robotic Res. 26, 577-589. https://doi.org/10.1177/0278364907079283Azkarate, M., Gerdes, L., Joudrier, L., J. Pérez-del Pulgar, C., 2020. A GNC architecture for planetary rovers with autonomous navigation. En: International Conference on Robotics and Automation (ICRA). IEEE, pp. 1-6. https://doi.org/10.1109/ICRA40945.2020.9197122Bithas, P. S., Michailidis, E. T., Nomikos, N., Vouyioukas, D., Kanatas, A. G., 2019. A survey on machine-learning techniques for UAV-based communications. Sensors 19 (23). URL: https://www.mdpi.com/1424-8220/19/23/5170 https://doi.org/10.3390/s19235170Chao, H., Gu, Y., Napolitano, M., Jan 2014. A survey of optical flow techniques for robotics navigation applications. Journal of Intelligent & Robotic Systems 73 (1), 361-372. https://doi.org/10.1007/s10846-013-9923-6Choi, S. Y., Cha, D., 03 2019. Unmanned aerial vehicles using machine learning for autonomous flight; state-of-the-art. Advanced Robotics, 1-13. https://doi.org/10.1080/01691864.2019.1586760España, M. D., 2019. Sistemas de Navegación Integrada con Aplicaciones, 2ndo Edición. CONAE. URL: https://www.argentina.gob.ar/sites/default/files/me_ nav_integ_libro_2019.pdfFonnegra, R., Goez, G., Tobón, A., 2019. Estimación de orientación de un vehículo aéreo no modelado usando fusión de sensores inerciales y aprendizaje de máquina. Revista Iberoamericana de Automática e Informática 16(4), 415-422. https://doi.org/10.4995/riai.2019.11286Fossen, T., Pettersen, K., Nijmeijer, H., 2017. Sensing and Control for Autonomous Vehicles. Springer. https://doi.org/10.1007/978-3-319-55372-6Garberoglio, L., Pose, C., Mas, I., Giribet, J., 2019. Diseño de un autopiloto para pequeños vehículos no tripulados. Elektron 3 (1).https:// .org/10.37537/rev.elektron.3.1.71.2019Giribet, J., Mas, I., Moreno, P., 2018. Vision-based integrated navigation system and optimal allocation in formation flying. En: Proceedins of International Conference on Unmanned Aerial Aircrafts, Dallas, USA. pp. 52-61. https://doi.org/10.1109/ICUAS.2018.8453429Giribet, J. I., Luiso, J., 2020. Vuelo experimental - control de flujo óptico - LAR-GPSIC. URL: https://youtu.be/9YuDyu2lpvAGomes, L. L., Leal, L., Oliveira, T. R., Cunha, J. P. V. S., Revoredo, T. C., Aug 2016. Unmanned quadcopter control using a motion capture system. IEEE Latin America Transactions 14 (8), 3606-3613. https://doi.org/10.1109/TLA.2016.7786340Grabe, V., Bülth ff, H. H., Giordano, P. R., 2012. On-board velocity estimation and closed-loop control of a quadrotor UAV based on optical flow. En: 2012 IEEE International Conference on Robotics and Automation. pp. 491-497. https://doi.org/10.1109/ICRA.2012.6225328Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M., 2013. An open source and open hardware embedded metric optical flow CMOS camera for indoor and outdoor applications. En: 2013 IEEE International Conference on Robotics and Automation. pp. 1736-1741. https://doi.org/10.1109/ICRA.2013.6630805Horn, B. K. P., Schunck, B. G., 1981. Determining optical flow. Artificial Intelligence 17, 185-203. https://doi.org/10.1016/0004-3702(81)90024-2Jakubowski, A., Kubacki, A., Minorowicz, B., Nowak, A., 2015. Analysis thrust for different kind of propellers. En: Advances in Intelligent Systems and Computing. Springer International Publishing, pp. 85-90. https://doi.org/10.1007/978-3-319-15796-2_9Kanellakis, C., Nikolakopoulos, G., Jul 2017. Survey on computer vision for UAVs: Current developments and trends. Journal of Intelligent & Robotic Systems 87 (1), 141-168. https://doi.org/10.1007/s10846-017-0483-zLi, J., Li, Y., 2011. Dynamic analysis and pid control for a quadrotor. En: 2011 IEEE International Conference on Mechatronics and Automation. pp. 573- 578. https://doi.org/10.1109/ICMA.2011.5985724Lim, H., Lee, H., Kim, H. J., 2012. Onboard flight control of a micro quadrotor using single strapdown optical flow sensor. En: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. pp. 495-500. https://doi.org/10.1109/IROS.2012.6386045Ljung, L., 1999. System Identification: Theory for the User. Prentice Hall information and system sciences series. Prentice Hall PTR.Luiso, J. E., Giribet, J. I., 2017. Sensor de flujo óptico. En: Actas de la Reunión de Procesamiento de la Información y Control. pp. 1-6.Ma, Z., Li, H., Gu, Y., Li, Z., Li, Q., 2019. Flight and hover control system design for a mini-quadrotor based on multi-sensors. International Journal of Control, Automation and Systems 17, 486-499. https://doi.org/10.1007/s12555-017-0308-7Madridano, A., Campos, S., Al-Kaff, A., García, F., Martín, D., Escalera, A., 2020. Vehículo aéreo no tripulado para vigilancia y monitorización de incendios. Revista Iberoamericana de Automática e Informática industrial 17 (3), 254-263. https://doi.org/10.4995/riai.2020.11806Noormohammadi Asl, A., Esrafilian, O., Arzati, M. A., Taghirad, H. D., 2020. System identification and H∞-based control of quadrotor attitude. Mechanical Systems and Signal Processing 135. https://doi.org/10.1016/j.ymssp.2019.106358Sánchez Peña, R. S., Sznaier, M., 1998. Robust Systems Theory and Applications. John Wiley & Sons, Inc.Szafranski, G., Czyba, R., BŁachuta, M., 2014. Modeling and identification of electric propulsion system for multirotor unmanned aerial vehicle design. En: 2014 International Conference on Unmanned Aircraft Systems (ICUAS). pp. 470-476. https://doi.org/10.1109/ICUAS.2014.6842287Tai, X.-C., Lie, K.-A., Chan, T. F., Osher, S. (Eds.), 2007. Image Processing Based on Partial Differential Equations. Springer-Verlag Berlin Heidelberg, proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems, CMA, Oslo, August 8-12, 2005. https://doi.org/10.1007/978-3-540-33267-1Tournour, A., 2018. Control de un vehículo aéreo no tripulado utilizando información de flujo óptico. Tesis de Ingeniería Electrónica. Facultad de Ingeniería, Universidad de Buenos Aires. URL: http://bibliotecadigital.fi.uba.ar/items/show/18231Zhang, X., Xian, B., Zhao, B., Zhang, Y., 2015. Autonomous flight control of a nano quadrotor helicopter in a gps-denied environment using on-board vision. IEEE Transaction on Industrial Electronics 62, 10. https://doi.org/10.1109/TIE.2015.2420036Zul Azfar, A., Hazry, D., 2011. A simple approach on implementing imu sensor fusion in pid controller for stabilizing quadrotor flight control. En: IEEE 7th Int. Colloquium on Signal Processing and its Applications. pp. 28-32. https://doi.org/10.1109/CSPA.2011.575983