285 research outputs found
Deglaciation constraints in the Parâng Mountains, Southern Romania, using surface exposure dating
Cosmogenic nuclide surface exposure ages have been widely used to constrain glacial chronologies in the European regions. This paper brings new evidence that the Romanian Carpathians sheltered mountain glaciers in their upper valleys and cirques until the end of the last glaciation. Twenty-four 10Be surface exposure ages were obtained from boulders on moraine crests in the central area of the Parâng Mountains, Southern Carpathians. Exposure ages were used to constrain the timing of the deglaciation events during the Late Glacial. The lowest boulders yielded an age of 13.0 ± 1.1 (1766 m) and final deglaciation occurred at 10.2 ± 0.9 ka (2055 m). Timing of the Late Glacial events and complete deglaciation reported in this study are consistent with, and confirm, previously reported ages of deglaciation within the Carpathian and surrounding European region
Quantum Error Correcting Codes Using Qudit Graph States
Graph states are generalized from qubits to collections of qudits of
arbitrary dimension , and simple graphical methods are used to construct
both additive and nonadditive quantum error correcting codes. Codes of distance
2 saturating the quantum Singleton bound for arbitrarily large and are
constructed using simple graphs, except when is odd and is even.
Computer searches have produced a number of codes with distances 3 and 4, some
previously known and some new. The concept of a stabilizer is extended to
general , and shown to provide a dual representation of an additive graph
code.Comment: Version 4 is almost exactly the same as the published version in
Phys. Rev.
Suppression of decoherence in quantum registers by entanglement with a nonequilibrium environment
It is shown that a nonequilibrium environment can be instrumental in
suppressing decoherence between distinct decoherence free subspaces in quantum
registers. The effect is found in the framework of exact coherent-product
solutions for model registers decohering in a bath of degenerate harmonic
modes, through couplings linear in bath coordinates. These solutions represent
a natural nonequilibrium extension of the standard solution for a decoupled
initial register state and a thermal environment. Under appropriate conditions,
the corresponding reduced register distribution can propagate in an unperturbed
manner, even in the presence of entanglement between states belonging to
distinct decoherence free subspaces, and despite persistent bath entanglement.
As a byproduct, we also obtain a refined picture of coherence dynamics under
bang-bang decoherence control. In particular, it is shown that each
radio-frequency pulse in a typical bang-bang cycle induces a revival of
coherence, and that these revivals are exploited in a natural way by the
time-symmetrized version of the bang-bang protocol.Comment: RevTex3, 26 pgs., 2 figs.. This seriously expanded version accepted
by Phys.Rev.A. No fundamentally new content, but rewritten introduction to
problem, self-contained introduction of thermal coherent-product states in
standard operator formalism, examples of zero-temperature decoherence free
Davydov states. Also fixed a typo that propagated into an interpretational
blunder in old Sec.3 [fortunately of no consequence
A Variational Procedure for Time-Dependent Processes
A simple variational Lagrangian is proposed for the time development of an
arbitrary density matrix, employing the "factorization" of the density. Only
the "kinetic energy" appears in the Lagrangian. The formalism applies to pure
and mixed state cases, the Navier-Stokes equations of hydrodynamics, transport
theory, etc. It recaptures the Least Dissipation Function condition of
Rayleigh-Onsager {\bf and in practical applications is flexible}. The
variational proposal is tested on a two level system interacting that is
subject, in one instance, to an interaction with a single oscillator and, in
another, that evolves in a dissipative mode.Comment: 25 pages, 4 figure
Temporally constant quaternary uplift rates and their relationship with extensional upper-plate faults in south Crete (Greece), constrained with 36Cl cosmogenic exposure dating
In order to investigate how active upper-plate faults in Crete influence uplift above the Hellenic subduction zone we mapped deformed Late Quaternary marine terraces along 17 profiles, across strike of the South Central Crete Fault (SCCF), identified and dated palaeoshorelines using in-situ 36Cl exposure dating on wave-cut platforms, correlated them with the Quaternary sea-level curve and calculated uplift rates. We identified 16 distinct palaeoshorelines from field observations and study of digital elevation models (DEMs), located along the footwall and hangingwall of the SCCF and the footwall of the offshore Ptolemy ‘trench’ fault. Cosmogenic dating constrains the ages of three palaeoshorelines as 76, 100 and 125 ka. We use these dates to guide a correlation of other mapped palaeoshorelines with Quaternary sea-level highstands between 200 and 980 ka with results implying that the uplift rate is constant through time at each of the 17 profile locations. Elastic half-space modelling implies that uplift in both the hangingwall and footwall of the SCCF is influenced by uplift related to offshore upper-plate faults, in addition to background regional uplift, perhaps from the subduction interface. By correlating palaeoshorelines across the active South Central Crete Fault, we derive a throw-rate of 0.41 mm/yr for this fault which can also be expressed as a slip rate of 0.58 mm/yr. The fault-specific earthquake recurrence interval, assuming repetition of 1.1 m slip events, is approximately 2700 years for the SCCF
Topology of amorphous tetrahedral semiconductors on intermediate lengthscales
Using the recently-proposed ``activation-relaxation technique'' for
optimizing complex structures, we develop a structural model appropriate to
a-GaAs which is almost free of odd-membered rings, i.e., wrong bonds, and
possesses an almost perfect coordination of four. The model is found to be
superior to structures obtained from much more computer-intensive tight-binding
or quantum molecular-dynamics simulations. For the elemental system a-Si, where
wrong bonds do not exist, the cost in elastic energy for removing odd-membered
rings is such that the traditional continuous-random network is appropriate.
Our study thus provides, for the first time, direct information on the nature
of intermediate-range topology in amorphous tetrahedral semiconductors.Comment: 4 pages, Latex and 2 postscript figure
Off-Diagonal Deformations of Kerr Metrics and Black Ellipsoids in Heterotic Supergravity
Geometric methods for constructing exact solutions of motion equations with
first order corrections to the heterotic supergravity action
implying a non-trivial Yang-Mills sector and six dimensional, 6-d,
almost-K\"ahler internal spaces are studied. In 10-d spacetimes, general
parametrizations for generic off-diagonal metrics, nonlinear and linear
connections and matter sources, when the equations of motion decouple in very
general forms are considered. This allows us to construct a variety of exact
solutions when the coefficients of fundamental geometric/physical objects
depend on all higher dimensional spacetime coordinates via corresponding
classes of generating and integration functions, generalized effective sources
and integration constants. Such generalized solutions are determined by generic
off-diagonal metrics and nonlinear and/or linear connections. In particular, as
configurations which are warped/compactified to lower dimensions and for
Levi-Civita connections. The corresponding metrics can have (non) Killing
and/or Lie algebra symmetries and/or describe (1+2)-d and/or (1+3)-d domain
wall configurations, with possible warping nearly almost-K\"ahler manifolds,
with gravitational and gauge instantons for nonlinear vacuum configurations and
effective polarizations of cosmological and interaction constants encoding
string gravity effects. A series of examples of exact solutions describing
generic off-diagonal supergravity modifications to black hole/ ellipsoid and
solitonic configurations are provided and analyzed. We prove that it is
possible to reproduce the Kerr and other type black solutions in general
relativity (with certain types of string corrections) in 4-d and to generalize
the solutions to non-vacuum configurations in (super) gravity/ string theories.Comment: latex2e, 44 pages with table of content, v2 accepted to EJPC with
minor typos modifications requested by editor and referee and up-dated
reference
Distributed normal faulting in the tip zone of the South Alkyonides Fault System, Gulf of Corinth, constrained using 36Cl exposure dating of late-Quaternary wave-cut platforms
The geometry, rates and kinematics of active faulting in the region close to the tip of a major crustal-scale normal fault in the Gulf of Corinth, Greece, are investigated using detailed fault mapping and new absolute dating. Fault offsets have been dated using a combination of 234U/230Th coral dates and in situ 36Cl cosmogenic exposure ages for sediments and wave-cut platforms deformed by the faults. Our results show that deformation in the tip zone is distributed across as many as eight faults arranged within ~700 m across strike, each of which deforms deposits and landforms associated with the 125 ka marine terrace of Marine Isotope Stage 5e. Summed throw-rates across strike achieve values as high as 0.3–1.6 mm/yr, values that are comparable to those at the centre of the crustal-scale fault (2–3 mm/yr from Holocene palaeoseismology and 3–4 mm/yr from GPS geodesy). The relatively high deformation rate and distributed deformation in the tip zone are discussed in terms of stress enhancement from rupture of neighbouring crustal-scale faults and in terms of how this should be considered during fault-based seismic hazard assessment
- …