108 research outputs found

    The formation of SCEs as an effect of occupational exposure to formaldehyde

    Get PDF
    Formaldehyde (FA) is a ubiquitous toxic chemical employed worldwide due to its disinfectant and preservative properties. Despite being classified as a human carcinogen, FA is still employed as formalin in pathology wards as standard fixative. We evaluated its relationship with the formation of sister-chromatid exchanges (SCEs) in cultured peripheral blood lymphocytes on 57 pathologists and 48 controls and the risk/protective role played by several genetic polymorphisms. All subjects were assessed for SCEs and genotyped for the most common cancer-associated gene polymorphisms: CYP1A1 exon 7 (A > G), CYP1A1*2A (T > C), CYP2C19*2 (G > A), GSTT1 (presence/absence), GSTM1 (presence/absence), GSTP1 (A > G), XRCC1 (G399A), XRCC1 (C194T), XRCC1 (A280G), XPC exon 15 (A939C), XPC exon 9 (C499T), TNFα − 308 G > A), IL10 − 1082 (G > A), and IL6 − 174 (G > C). Air-FA concentration was assessed through passive personal samplers. Pathologists, exposed to 55.2 μg/m(3) of air-FA, showed a significantly higher SCEs frequency than controls, exposed, respectively, to 18.4 μg/m(3). Air-FA was directly correlated with SCEs frequency and inversely with the replication index (RI). Regression models showed FA exposure as a significant predictor in developing SCEs, while did not highlight any role of the selected polymorphisms. Our study confirms the role of low air-FA levels as genotoxicity inductor, highlighting the importance to define exposure limits that could be safer for exposed workers. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00204-022-03238-w

    Loss of PALB2 predicts poor prognosis in acute myeloid leukemia and suggests novel therapeutic strategies targeting the DNA repair pathway

    Get PDF
    Dear Editor, Acute myeloid leukemia (AML) patients carrying complex karyotype or aneuploidies have a very poor prognosis, with a 5-year overall survival (OS) <20%1. We and others have shown that these patients are characterized by high genomic instability, along with defects of DNA damage response (DDR) genes2,3

    Fetal striatal grafting slows motor and cognitive decline of Huntington's disease

    Get PDF
    OBJECTIVE: To assess the clinical effect of caudate-putaminal transplantation of fetal striatal tissue in Huntington's disease (HD). METHODS: We carried out a follow-up study on 10 HD transplanted patients and 16 HD not-transplanted patients. All patients were evaluated with the Unified HD Rating Scale (UHDRS) whose change in motor, cognitive, behavioural and functional capacity total scores were considered as outcome measures. Grafted patients also received morphological and molecular neuroimaging. RESULTS: Patients were followed-up from disease onset for a total of 309.3 person-years (minimum 5.3, median 11.2 years, maximum 21.6 years). UHDRS scores have been available since 2004 (median time of 5.7 years since onset, minimum zero, maximum 17.2 years). Median post-transplantation follow-up was 4.3 years, minimum 2.8, maximum 5.1 years. Adjusted post-transplantation motor score deterioration rate was reduced compared to the pretransplantation period, and to that of not-transplanted patients by 0.9 unit/years (95% CI 0.2 to 1.6). Cognitive score deterioration was reduced of 2.7 unit/years (95% CI 0.1 to 5.3). For grafted patients the 2-year post-transplantation [(18)F]fluorodeoxyglucose positron emission tomography (PET) showed striatal/cortical metabolic increase compared to the presurgical evaluation; 4-year post-transplantation PET values were slightly decreased, but remained higher than preoperatively. [(123)I]iodobenzamide single photon emission CT demonstrated an increase in striatal D2-receptor density during postgrafting follow-up. CONCLUSIONS: Grafted patients experienced a milder clinical course with less pronounced motor/cognitive decline and associated brain metabolism improvement. Life-time follow-up may ultimately clarify whether transplantation permanently modifies the natural course of the disease, allowing longer sojourn time at less severe clinical stage, and improvement of overall survival

    Identification of Two DNMT3A Mutations Compromising Protein Stability and Methylation Capacity in Acute Myeloid Leukemia

    Get PDF
    Somatic mutations of DNMT3A occur in about 20% of acute myeloid leukemia (AML) patients. They mostly consist in heterozygous missense mutations targeting a hotspot site at R882 codon, which exhibit a dominant negative effect and are associated with high myeloblast count, advanced age, and poor prognosis. Other types of mutations such as truncations, insertions, or single-nucleotide deletion also affect the DNMT3A gene, though with lower frequency. The present study aimed to characterize two DNMT3A gene mutations identified by next-generation sequencing (NGS), through analysis of protein stability and DNA methylation status at CpG islands. The first mutation was a single-nucleotide variant of DNMT3A at exon 20 causing a premature STOP codon (c.2385G > A; p.Trp795 17; NM-022552.4). The DNMT3A mutation load increased from 4.5% to 38.2% during guadecitabine treatment, with a dominant negative effect on CpG methylation and on protein expression. The second mutation was a novel insertion of 35 nucleotides in exon 22 of DNMT3A (NM-022552.4) that introduced a STOP codon too, after the amino acid Glu863 caused by a frameshift insertion (c.2586-2587insTCATGAATGAGAAAGAGGACATCTTATGGTGCACT; p. Thr862-Glu863fsins). The mutation, which was associated with reduced DNMT3A expression and CpG methylation, persisted at relapse with minor changes in the methylation profile and at protein level. Our data highlight the need to better understand the consequences of DNMT3A mutations other than R882 substitutions in the leukemogenic process in order to tailor patient treatments, thus avoiding therapeutic resistance and disease relapse

    Somatic Point Mutations in mtDNA Control Region Are Influenced by Genetic Background and Associated with Healthy Aging: A GEHA Study

    Get PDF
    Tissue specific somatic mutations occurring in the mtDNA control region have been proposed to provide a survival advantage. Data on twins and on relatives of long-lived subjects suggested that the occurrence/accumulation of these mutations may be genetically influenced. To further investigate control region somatic heteroplasmy in the elderly, we analyzed the segment surrounding the nt 150 position (previously reported as specific of Leukocytes) in various types of leukocytes obtained from 195 ultra-nonagenarians sib-pairs of Italian or Finnish origin collected in the frame of the GEHA Project. We found a significant correlation of the mtDNA control region heteroplasmy between sibs, confirming a genetic influence on this phenomenon. Furthermore, many subjects showed heteroplasmy due to mutations different from the C150T transition. In these cases heteroplasmy was correlated within sibpairs in Finnish and northern Italian samples, but not in southern Italians. This suggested that the genetic contribution to control region mutations may be population specific. Finally, we observed a possible correlation between heteroplasmy and Hand Grip strength, one of the best markers of physical performance and of mortality risk in the elderly. Our study provides new evidence on the relevance of mtDNA somatic mutations in aging and longevity and confirms that the occurrence of specific point mutations in the mtDNA control region may represent a strategy for the age-related remodelling of organismal functions

    Chromothripsis in acute myeloid leukemia: Biological features and impact on survival

    Get PDF
    Chromothripsis is a one-step genome-shattering catastrophe resulting from disruption of one or few chromosomes in multiple fragments and consequent random rejoining and repair. This study defines incidence of chromothripsis in 395 newly diagnosed adult acute myeloid leukemia (AML) patients from three institutions, its impact on survival and its genomic background. SNP 6.0 or CytoscanHD Array (Affymetrix\uae) were performed on all samples. We detected chromothripsis with a custom algorithm in 26/395 patients. Patients harboring chromothripsis had higher age (p = 0.002), ELN high risk (HR) (p < 0.001), lower white blood cell (WBC) count (p = 0.040), TP53 loss, and/or mutations (p < 0.001) while FLT3 (p = 0.025), and NPM1 (p = 0.032) mutations were mutually exclusive with chromothripsis. Chromothripsis-positive patients showed a worse overall survival (OS) (p < 0.001) compared with HR patients (p = 0.011) and a poor prognosis in a COX-HR optimal regression model. Chromothripsis presented the hallmarks of chromosome instability [i.e., TP53 alteration, 5q deletion, higher mean of copy number alteration (CNA), complex karyotype, alterations in DNA repair, and cell cycle] and focal deletions on chromosomes 4, 7, 12, 16, and 17. CBA. FISH showed that chromothripsis is associated with marker, derivative, and ring chromosomes. In conclusion, chromothripsis frequently occurs in AML (6.6%) and influences patient prognosis and disease biology

    Mitochondrial complex I and cell death: a semi-automatic shotgun model

    Get PDF
    Mitochondrial dysfunction often leads to cell death and disease. We can now draw correlations between the dysfunction of one of the most important mitochondrial enzymes, NADH:ubiquinone reductase or complex I, and its structural organization thanks to the recent advances in the X-ray structure of its bacterial homologs. The new structural information on bacterial complex I provide essential clues to finally understand how complex I may work. However, the same information remains difficult to interpret for many scientists working on mitochondrial complex I from different angles, especially in the field of cell death. Here, we present a novel way of interpreting the bacterial structural information in accessible terms. On the basis of the analogy to semi-automatic shotguns, we propose a novel functional model that incorporates recent structural information with previous evidence derived from studies on mitochondrial diseases, as well as functional bioenergetics

    Evidence for Sub-Haplogroup H5 of Mitochondrial DNA as a Risk Factor for Late Onset Alzheimer's Disease

    Get PDF
    BACKGROUND: Alzheimer's Disease (AD) is the most common neurodegenerative disease and the leading cause of dementia among senile subjects. It has been proposed that AD can be caused by defects in mitochondrial oxidative phosphorylation. Given the fundamental contribution of the mitochondrial genome (mtDNA) for the respiratory chain, there have been a number of studies investigating the association between mtDNA inherited variants and multifactorial diseases, however no general consensus has been reached yet on the correlation between mtDNA haplogroups and AD. METHODOLOGY/PRINCIPAL FINDINGS: We applied for the first time a high resolution analysis (sequencing of displacement loop and restriction analysis of specific markers in the coding region of mtDNA) to investigate the possible association between mtDNA-inherited sequence variation and AD in 936 AD patients and 776 cognitively assessed normal controls from central and northern Italy. Among over 40 mtDNA sub-haplogroups analysed, we found that sub-haplogroup H5 is a risk factor for AD (OR=1.85, 95% CI:1.04-3.23) in particular for females (OR=2.19, 95% CI:1.06-4.51) and independently from the APOE genotype. Multivariate logistic regression revealed an interaction between H5 and age. When the whole sample is considered, the H5a subgroup of molecules, harboring the 4336 transition in the tRNAGln gene, already associated to AD in early studies, was about threefold more represented in AD patients than in controls (2.0% vs 0.8%; p=0.031), and it might account for the increased frequency of H5 in AD patients (4.2% vs 2.3%). The complete re-sequencing of the 56 mtDNAs belonging to H5 revealed that AD patients showed a trend towards a higher number (p=0.052) of sporadic mutations in tRNA and rRNA genes when compared with controls. CONCLUSIONS: Our results indicate that high resolution analysis of inherited mtDNA sequence variation can help in identifying both ancient polymorphisms defining sub-haplogroups and the accumulation of sporadic mutations associated with complex traits such as AD
    • …
    corecore