13 research outputs found

    The mEPN scheme: an intuitive and flexible graphical system for rendering biological pathways

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is general agreement amongst biologists about the need for good pathway diagrams and a need to formalize the way biological pathways are depicted. However, implementing and agreeing how best to do this is currently the subject of some debate.</p> <p>Results</p> <p>The modified Edinburgh Pathway Notation (mEPN) scheme is founded on a notation system originally devised a number of years ago and through use has now been refined extensively. This process has been primarily driven by the author's attempts to produce process diagrams for a diverse range of biological pathways, particularly with respect to immune signaling in mammals. Here we provide a specification of the mEPN notation, its symbols, rules for its use and a comparison to the proposed Systems Biology Graphical Notation (SBGN) scheme.</p> <p>Conclusions</p> <p>We hope this work will contribute to the on-going community effort to develop a standard for depicting pathways and will provide a coherent guide to those planning to construct pathway diagrams of their biological systems of interest.</p

    Construction of a large scale integrated map of macrophage pathogen recognition and effector systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In an effort to better understand the molecular networks that underpin macrophage activation we have been assembling a map of relevant pathways. Manual curation of the published literature was carried out in order to define the components of these pathways and the interactions between them. This information has been assembled into a large integrated directional network and represented graphically using the modified Edinburgh Pathway Notation (mEPN) scheme.</p> <p>Results</p> <p>The diagram includes detailed views of the toll-like receptor (TLR) pathways, other pathogen recognition systems, NF-kappa-B, apoptosis, interferon signalling, MAP-kinase cascades, MHC antigen presentation and proteasome assembly, as well as selected views of the transcriptional networks they regulate. The integrated pathway includes a total of 496 unique proteins, the complexes formed between them and the processes in which they are involved. This produces a network of 2,170 nodes connected by 2,553 edges.</p> <p>Conclusions</p> <p>The pathway diagram is a navigable visual aid for displaying a consensus view of the pathway information available for these systems. It is also a valuable resource for computational modelling and aid in the interpretation of functional genomics data. We envisage that this work will be of value to those interested in macrophage biology and also contribute to the ongoing Systems Biology community effort to develop a standard notation scheme for the graphical representation of biological pathways.</p
    corecore