130 research outputs found

    A Feasibility Investigation of Modular Portable “Chelson Shelters” Micro-Homes to Alleviate Housing Deficiencies: A Case Study in Mithi, Tharpakar, Pakistan

    Get PDF
    Many people in Mithi, Tharparkar do not have proper housing, face an unhygienic water supply, and have no sanitation facilities. These factors contribute to disease, suffering and the inability to rise above their destitute existence. The idea for building portable houses for the people of Mithi is presented to provide them with better living conditions and where they can feel a sense of security, ownership and sanitation. Research on existing building systems and materials showed that the most feasible structure for the desert environment is modular panels attached to a core unit that contains all the basic plumbing and electrical fixtures. The unit can be expanded based on family needs. Discussion with government officials showed that these could be used for the immediate needs of the people who have been suffering more acutely the last several years due to a drought. They could also be a permanent solution to the housing crisis if the Chelson Shelter communities worked well for ten years. The infrastructure in the Tharparker Desert is inadequate to support typical housing. These shelters have low environmental impact, use little water and electricity and would be a good solution to make a community of people that can support each other and provide security

    Dendritic spine shape analysis based on two-photon microscopy images

    Get PDF
    Neuronal morphology and function are highly coupled. In particular, dendritic spine morphology is strongly governed by the incoming neuronal activity. Previously, volumes of dendritic spines have been considered as a primary parameter to study spine morphology and gain insight into structure-function coupling. However, this reductionist approach fails to incorporate the broad spine structure repertoire. First step towards integrating the rich spine morphology information into functional coupling is to classify spine shapes into main spine types suggested in the literature. Due to the lack of reliable automated analysis tools, classification is currently performed manually, which is a time-intensive task and prone to subjectivity. Availability of automated spine shape analysis tools can accelerate this process and help neuroscientists understand underlying structure and function relationship. Several studies on spine shape classification have been reported in the literature, however, there is an on-going debate on whether distinct spine shape classes exist or whether spines should be modeled through a continuum of shape variations. Another challenge is the subjectivity and bias that is introduced due to the supervised nature of classification approaches. This thesis focuses on morphological, shape, and appearance features based methods to perform dendritic spine shape analysis using both clustering and classification approaches. We apply manifold learning methods for dendritic spine classification and observe that ISOMAP implicitly computes prominent features suitable for classification purposes. We also apply linear representation based approach for spine classification and conclude that sparse representation provides slightly better classification performance. We propose 2D and 3D morphological features based approach for spine shape analysis and demonstrate the advantage of 3D morphological features. We also use a deep learning based approach for spine classification and show that mid-level features extracted from Convolutional Neural Networks (CNNs) perform as well as hand-crafted features. We propose a kernel density estimation (KDE) based framework for dendritic spine classification. We evaluate our proposed approaches by comparing labels assigned by a neuroscience expert. Our KDE based framework also enables neuroscientists to analyze separability of spine shape classes in the likelihood ratio space, which leads to further insights about the nature of the spine shape analysis problem. Furthermore, we also propose a methodology for unsupervised learning and clustering of spine shapes. In particular, we use x-means to perform cluster analysis that selects the number of clusters automatically using the Bayesian information criterion (BIC). The objective of clustering in this context is two-fold: confirm the hypothesis of some distinct shape classes and discover new natural groups. We observe that although there are many spines which easily fit into the definition of standard shape types (confirming the hypothesis), there are also a significant number of others which do not comply with standard shape types and demonstrate intermediate properties

    Multi-Person Tracking Based on Faster R-CNN and Deep Appearance Features

    Get PDF
    Mostly computer vision problems related to crowd analytics are highly dependent upon multi-object tracking (MOT) systems. There are two major steps involved in the design of MOT system: object detection and association. In the first step, desired objects are detected in every frame of video stream. Detection quality directly influences the performance of tracking. The second step involves the correspondence of detected objects in current frame with the previous to obtain their trajectories. High accuracy in object detection system results in less number of missing detection and finally produces less fragmented tracks. Better object association increases the affinity between objects in different frames. This paper presents a novel algorithm for improved object detection followed by enhanced object tracking. Object detection accuracy has been increased by employing deep learning-based Faster region convolutional neural network (Faster R-CNN) algorithm. Object association is carried out by using appearance and improved motion features. Evaluation results show that we have enhanced the performance of current state-of-the-art work by reducing identity switches and fragmentation
    corecore