3 research outputs found

    Feature Selection by Multiobjective Optimization: Application to Spam Detection System by Neural Networks and Grasshopper Optimization Algorithm

    Get PDF
    Networks are strained by spam, which also overloads email servers and blocks mailboxes with unwanted messages and files. Setting the protective level for spam filtering might become even more crucial for email users when malicious steps are taken since they must deal with an increase in the number of valid communications being marked as spam. By finding patterns in email communications, spam detection systems (SDS) have been developed to keep track of spammers and filter email activity. SDS has also enhanced the tool for detecting spam by reducing the rate of false positives and increasing the accuracy of detection. The difficulty with spam classifiers is the abundance of features. The importance of feature selection (FS) comes from its role in directing the feature selection algorithm’s search for ways to improve the SDS’s classification performance and accuracy. As a means of enhancing the performance of the SDS, we use a wrapper technique in this study that is based on the multi-objective grasshopper optimization algorithm (MOGOA) for feature extraction and the recently revised EGOA algorithm for multilayer perceptron (MLP) training. The suggested system’s performance was verified using the SpamBase, SpamAssassin, and UK-2011 datasets. Our research showed that our novel approach outperformed a variety of established practices in the literature by as much as 97.5%, 98.3%, and 96.4% respectively.©2022 the Authors. Published by IEEE. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/fi=vertaisarvioitu|en=peerReviewed

    A Robust Tuned K-Nearest Neighbours Classifier for Software Defect Prediction

    No full text
    If the software fails to perform its function, serious consequences may result. Software defect prediction is one of the most useful tasks in the Software Development Life Cycle (SDLC) process where it can determine which modules of the software are prone to defects and need to be tested. Owing to its efficiency, machine learning techniques are growing rapidly in software defect prediction. K-Nearest Neighbors (KNN) classifier, a supervised classification technique, has been widely used for this problem. The number of neighbors, which measure by calculating the distance between the new data and its neighbors, has a significant impact on KNN performance. Therefore, the KNN’s classifier will perform better if the k hyperparameters are properly tuned and the independent inputs are rescaled. In order to improve the performance of KNN, this paper aims to presents a robust tuned machine learning approach based on K-Nearest Neighbors classifier for software defect prediction, called Robust-Tuned-KNN(RT-KNN). The RT-KNN aims to address the two abovementioned problems by (1) tuning KNN and finding the optimal value for k in both the training and testing phases that can lead to good prediction results, and (2) using the Robust scaler to rescale the different independent inputs. The experiment results demonstrate that RT-KNN is able to give sufficiently competitive results compared with original KNN and other existing works.©2022 Springer. This is a post-peer-review, pre-copyedit version of an article published in Proceedings of the 2nd International Conference on Emerging Technologies and Intelligent Systems: ICETIS 2022, Volume 2. The final authenticated version is available online at: https://doi.org/10.1007/978-3-031-20429-6fi=vertaisarvioitu|en=peerReviewed

    Cyber Intrusion Detection System Based on a Multiobjective Binary Bat Algorithm for Feature Selection and Enhanced Bat Algorithm for Parameter Optimization in Neural Networks

    Get PDF
    The staggering development of cyber threats has propelled experts, professionals and specialists in the field of security into the development of more dependable protection systems, including effective intrusion detection system (IDS) mechanisms which are equipped for boosting accurately detected threats and limiting erroneously detected threats simultaneously. Nonetheless, the proficiency of the IDS framework depends essentially on extracted features from network traffic and an effective classifier of the traffic into abnormal or normal traffic. The prime impetus of this study is to increase the performance of the IDS on networks by building a two-phase framework to reinforce and subsequently enhance detection rate and diminish the rate of false alarm. The initial stage utilizes the developed algorithm of a proficient wrapper-approach-based feature selection which is created on a multi-objective BAT algorithm (MOBBAT). The subsequent stage utilizes the features obtained from the initial stage to categorize the traffic based on the newly upgraded BAT algorithm (EBAT) for training multilayer perceptron (EBATMLP), to improve the IDS performance. The resulting methodology is known as the (MOB-EBATMLP). The efficiency of our proposition has been assessed by utilizing the mainstream benchmarked datasets: NLS-KDD, ISCX2012, UNSW-NB15, KDD CUP 1999, and CICIDS2017 which are established as standard datasets for evaluating IDS. The outcome of our experimental analysis demonstrates a noteworthy advancement in network IDS above other techniques
    corecore