66 research outputs found

    Identification of substrates of P-Glycoprotein using in-silico methods

    Get PDF
    The ABC transporter superfamily is one of the largest and abundant families of proteins. It is a large group of proteins that transport a range of substances in cell systems. The ABC transporter P-glycoprotein (ABCB1, P-gp), a polyspecific protein has demonstrated its function as a transporter of hydrophobic drugs as well as transporting lipids, steroids and metabolic products. As well as this, previous studies have shown that P-gp is over expressed in cancerous tissues and plays a role in multidrug resistance. In this study, in-silico methods were used to dock a data set of compounds to P-glycoprotein structures available in the Protein data bank. Binding sites were defined using co-crystallised ligand structures of P-gp and docking energies were calculated using MOE. Statistical models were built to gain a better understanding of how compounds may interact with P-gp. The protein was able to bind to structurally different compounds and results indicate that LogP is the most important factor for drug binding to P-glycoprotein

    QSAR models for the prediction of plasma protein binding

    Get PDF
    Introduction: The prediction of plasma protein binding (ppb) is of paramount importance in the pharmacokinetics characterization of drugs, as it causes significant changes in volume of distribution, clearance and drug half life. This study utilized Quantitative Structure - Activity Relationships (QSAR) for the prediction of plasma protein binding. Methods: Protein binding values for 794 compounds were collated from literature. The data was partitioned into a training set of 662 compounds and an external validation set of 132 compounds. Physicochemical and molecular descriptors were calculated for each compound using ACD labs/logD, MOE (Chemical Computing Group) and Symyx QSAR software packages. Several data mining tools were employed for the construction of models. These included stepwise regression analysis, Classification and Regression Trees (CART), Boosted trees and Random Forest. Results: Several predictive models were identified; however, one model in particular produced significantly superior prediction accuracy for the external validation set as measured using mean absolute error and correlation coefficient. The selected model was a boosted regression tree model which had the mean absolute error for training set of 13.25 and for validation set of 14.96. Conclusion: Plasma protein binding can be modeled using simple regression trees or multiple linear regressions with reasonable model accuracies. These interpretable models were able to identify the governing molecular factors for a high ppb that included hydrophobicity, van der Waals surface area parameters, and aromaticity. On the other hand, the more complicated ensemble method of boosted regression trees produced the most accurate ppb estimations for the external validation set. © 2013 by Tabriz University of Medical Sciences

    Quantitative study of the structural requirements of phthalazine/quinazoline derivatives for interaction with human liver aldehyde oxidase

    Get PDF
    Aldehyde oxidase is a molybdenum-containing enzyme distributed throughout the animal kingdom. Although this enzyme is capable of metabolizing a wide range of aldehydes and N-heterocyclic compounds, there is no reported detailed study of physicochemical requirements of the enzyme-substrate interactions. The aim of this study, therefore, was to investigate quantitatively the relationships between the kinetic constants of aldehyde oxidase-catalyzed oxidation of some phthalazine and quinazoline derivatives (as substrates) and their structural parameters. Multiple regression and stepwise regression analyses showed that polarity of phthalazines (expressed as dipole moment μ, cohesive energy density δT and an indicator variable for hydrogen-bond acceptor ability of R1 substituent, HBA) had a negative effect on the enzyme activity (leading to the reduction of Vmax and increase of Km). Electron withdrawing substituents in the quinazoline series are favorable for interaction with the enzyme. This finding and also the relationships of 1/Km of phthalazines with the energy of the lowest unoccupied molecular orbital and log Vmax/logKm of phthalazines with degree of bonding of the two nitrogen atoms in the molecules are consistent with the mechanism of action. The reaction involves a nucleophilic attack on an electron-deficient sp2-hybridized carbon atom and formation of an epoxide intermediate following the disruption of the aromatic structure

    Enzastaurin inhibits ABCB1-mediated drug efflux independently of effects on protein kinase C signalling and the cellular p53 status

    Get PDF
    The PKCβ inhibitor enzastaurin was tested in parental neuroblastoma and rhabdomyosarcoma cell lines, their vincristine-resistant sub-lines, primary neuroblastoma cells, ABCB1-transduced, ABCG2-transduced, and p53-depleted cells. Enzastaurin IC50s ranged from 3.3 to 9.5 μM in cell lines and primary cells independently of the ABCB1, ABCG2, or p53 status. Enzastaurin 0.3125 μM interfered with ABCB1-mediated drug transport. PKCα and PKCβ may phosphorylate and activate ABCB1 under the control of p53. However, enzastaurin exerted similar effects on ABCB1 in the presence or absence of functional p53. Also, enzastaurin inhibited PKC signalling only in concentrations ≥ 1.25 μM. The investigated cell lines did not express PKCβ. PKCα depletion reduced PKC signalling but did not affect ABCB1 activity. Intracellular levels of the fluorescent ABCB1 substrate rhodamine 123 rapidly decreased after wash-out of extracellular enzastaurin, and enzastaurin induced ABCB1 ATPase activity resembling the ABCB1 substrate verapamil. Computational docking experiments detected a direct interaction of enzastaurin and ABCB1. These data suggest that enzastaurin directly interferes with ABCB1 function. Enzastaurin further inhibited ABCG2-mediated drug transport but by a different mechanism since it reduced ABCG2 ATPase activity. These findings are important for the further development of therapies combining enzastaurin with ABC transporter substrates

    QSPR Modeling using Catalan Solvent and Solute Parameters

    Get PDF
    A área de correlação quantitativa entre estrutura e propriedade (QSPR) pode beneficiar-se de descritores moleculares que representam interações intermoleculares. Catalan desenvolveu um método de escalas solvatocrômicas para solventes que pode ser explorado para esta finalidade. Neste trabalho, escalas de solvente de Catalan foram usadas como descritores moleculares para o desenvolvimento de modelos QSPR, e para o cálculo de novos descritores de soluto para uso posterior em QSPR. As escalas Catalan para o solvente e os descritores de soluto derivados foram recentemente comparados com o método de descritores de Abraham, em termos da qualidade do QSPR desenvolvido. Os parâmetros Catalan para solventes, que mostraram uma correlação modesta com os correspondentes descritores de Abraham, mostraram-se bem sucedidos para modelar temperatura de fusão, temperatura de ebulição, ponto de ignição, índice de refração, tensão superficial, densidade e parâmetro de solubilidade dos solventes, com médias geométricas dos desvios relativos (GMRD) de 7,1, 6,6, 4,9, 3,8, 9,1, 6,0 e 4,2%, respectivamente. Os descritores do soluto foram obtidos a partir das equações de regressão entre a solubilidade de um soluto em diferentes solventes com um GMRD total de 30,0%. Os descritores de soluto obtidos desta maneira superam o modelo de solvatação geral de Abraham no cálculo de solubilidade em meio aquoso de 27 solutos de várias famílias químicas. Os descritores Catalan podem ser considerados como um recurso valioso para modelagem QSPR. The field of quantitative structure-property relationship (QSPR) can greatly benefit from molecular descriptors that particularly represent the intermolecular interactions. Catalan has developed a set of solvatochromic scales for solvents, which could be exploited for this purpose. In this work, Catalan solvent scales were explored as molecular descriptors for the development of QSPR models, and for the calculation of new solute descriptors for further use in QSPR. Catalan solvent scales and the newly derived solute descriptors were compared with the commonly used set of Abraham descriptors in terms of the quality of the developed QSPRs. Catalan solvent parameters, which showed modest correlation with the corresponding Abraham descriptors, proved to be successful in modeling melting point, boiling point, flash point, refractive index, surface tension, density, and solubility parameter of the solvents with geometric mean relative deviations (GMRD) of 7.1, 6.6, 4.9, 3.8, 9.1, 6.0, and 4.2%, respectively. The solute descriptors were obtained from regression equations between a solute's solubility in different solvents with an overall GMRD of 30.0%. The solute descriptors obtained in this way outperformed Abraham general solvation model in the calculation of aqueous solubility for 27 solutes of broad chemical ranges. It was concluded that Catalan descriptors can be regarded as a valuable resource for QSPR modeling
    corecore