1,987 research outputs found

    Generalized second law of thermodynamics in modified FRW cosmology with corrected entropy-area relation

    Full text link
    Using the corrected entropy-area relation motivated by the loop quantum gravity, we investigate the validity of the generalized second law of thermodynamics in the framework of modified FRW cosmology. We consider a non-flat universe filled with an interacting viscous dark energy with dark matter and radiation. The boundary of the universe is assumed to be the dynamical apparent horizon. We find out that the generalized second law is always satisfied throughout the history of the universe for any spatial curvature regardless of the dark energy model.Comment: 9 pages, accepted for publication in Europhysics Letter

    The extended uncertainty principle inspires the R\'{e}nyi entropy

    Full text link
    We use the extended uncertainty principle (EUP) in order to obtain the R\'{e}nyi entropy for a black hole (BH). The result implies that the non-extensivity parameter, appeared in the R\'{e}nyi entropy formalism, may be evaluated from the considerations which lead to EUP. It is also shown that, for excited BHs, the R\'{e}nyi entropy is a function of the BH principal quantum number, i.e. the BH quantum excited state. Temperature and heat capacity of the excited BHs are also investigated addressing two phases while only one of them can be stable. At this situation, whereas entropy is vanished, temperature may take a non-zero positive minimum value, depending on the value of the non-extensivity parameter. The evaporation time of excited BH has also been studied

    An investigation of aerodynamic characteristics of wings having vortex flow using different numerical codes

    Get PDF
    Three different numerical codes are employed to determine the aerodynamic characteristics of wings with separation induced vortex flows. Both flat as well as cambered wings of various planform shapes are studied. The effects of wing thickness, fuselage, notch ratio and multiple vortex modeling on aerodynamic performance of the wing are also examined. The theoretically predicted results are compared with experimental results to validate the various computer codes used in this study. An analytical procedure for designing aerodynamically effective leading edge extension (LEE) for a thick delta wing is also presented

    An analytical design procedure for the determination of effective leading edge extensions on thick delta wings

    Get PDF
    An analytical design procedure for leading edge extensions (LEE) was developed for thick delta wings. This LEE device is designed to be mounted to a wing along the pseudo-stagnation stream surface associated with the attached flow design lift coefficient of greater than zero. The intended purpose of this device is to improve the aerodynamic performance of high subsonic and low supersonic aircraft at incidences above that of attached flow design lift coefficient, by using a vortex system emanating along the leading edges of the device. The low pressure associated with these vortices would act on the LEE upper surface and the forward facing area at the wing leading edges, providing an additional lift and effective leading edge thrust recovery. The first application of this technique was to a thick, round edged, twisted and cambered wing of approximately triangular planform having a sweep of 58 deg and aspect ratio of 2.30. The panel aerodynamics and vortex lattice method with suction analogy computer codes were employed to determine the pseudo-stagnation stream surface and an optimized LEE planform shape

    Thermodynamic analysis of gravitational field equations in Lyra manifold

    Get PDF
    Considering the Einstein field equations in Lyra manifold, and applying the unified first law of thermodynamics as well as the Clausius relation to the apparent horizon of FRW universe, we find the entropy of apparent horizon in Lyra manifold. In addition, the validity of second law of thermodynamics and its generalized form are also studied. Finally, we use the first law of thermodynamics in order to find the horizon entropy of static spherically symmetric spacetimes. Some results of considering (anti)de-Sitter and Schwarzschild metrics have also been addressed.Comment: Accepted by AHE
    corecore