2 research outputs found

    Machine learning for prediction models to mitigate the voltage deviation in photovoltaic-rich distributed network

    Get PDF
    The voltage deviation is one of the most crucial power quality issues that occur in electrical power systems. Renewable energy plays a vital role in electrical distribution networks due to the high economic returns. However, the presence of photovoltaic systems changes the nature of the energy flow in the grid and causes many problems such as voltage deviation. In this work, several predictive models are examined for voltage regulation in the Jordanian Sabha distribution network equipped with photovoltaic farms. The augmented grey wolf optimizer is used to train the different predictive models. To evaluate the performance of models, a value of one for regression factor and a low value for root mean square error, mean square error, and mean absolute error are used as standards. In addition, a comparison between nineteen predictive models has been made. The results have proved the capability of linear regression and the gaussian process to restore the bus voltages in the distribution network accurately and quickly and to solve the shortening in the voltage dynamic response caused by the iterative nature of the heuristic algorithm. 

    A Linear Relation for Voltage Unbalance Factor Evaluation in Three-Phase Electrical Power System Using Space Vector

    No full text
    The Voltage Unbalance Factor (VUF) index is recommended to evaluate system performance under unbalanced operation. However, its calculation requires complex algebra which limits its use in the field. Furthermore, one system cycle is required at least to detect unbalance using the VUF. Ideally unbalance mitigation must be performed within 10 ms for 50 Hz systems. In this work, a linear relation for VUF evaluation in three-phase electrical power system using space vector (SV) is derived. It is proposed to determine the voltage unbalance quickly and accurately and to overcome the constraints associated with the traditional methods of VUF evaluation. Aqaba-Qatrana-South Amman (AQSA) power system is considered to study the system performance under unbalanced conditions. The results show that both the complexity of calculations and the time required to evaluate VUF are reduced significantly
    corecore