7 research outputs found

    Efficient in vitro delivery of Noggin siRNA enhances osteoblastogenesis

    No full text
    Several types of serious bone defects would not heal without invasive clinical intervention. One approach to such defects is to enhance the capacity of bone-formation cells. Exogenous bone morphogenetic proteins (BMP) have been utilized to positively regulate matrix mineralization and osteoblastogenesis, however, numerous adverse effects are associated with this approach. Noggin, a potent antagonist of BMPs, is an ideal candidate to target and decrease the need for supraphysiological doses of BMPs. In the current research we report a novel siRNA-mediated gene knock-down strategy to down-regulate Noggin. We utilized a lipid nanoparticle (LNP) delivery strategy in pre-osteoblastic rat cells. In vitro LNP-siRNA treatment caused inconsequential cell toxicity and transfection was achieved in over 85% of cells. Noggin siRNA treatment successfully down-regulated cellular Noggin protein levels and enhanced BMP signal activity which in turn resulted in significantly increased osteoblast differentiation and extracellular matrix mineralization evidenced by histological assessments. Gene expression analysis showed that targeting Noggin specifically in bone cells would not lead to a compensatory effect from other BMP negative regulators such as Gremlin and Chordin. The results from this study support the notion that novel therapeutics targeting Noggin have the clinically relevant potential to enhance bone formation without the need for toxic doses of exogenous BMPs. Such treatments will undeniably provide safe and economical treatments for individuals whose poor bone repair results in permanent morbidity and disability

    MGMT hypermethylation and BCL-2 overexpression associated with superficial bladder cancer and recurrence

    No full text
    BACKGROUND: Urinary bladder carcinoma is one of the leading causes of death among men, and its high recurrence rates make it one of the most solid tumors to treat. The silencing of the tumor suppressor gene by hypermethylation of the CpG islands and overexpression of proto-oncogene proteins are the main mechanisms in cancers. Here, we investigate methylation status of O6-methylguanine-DNA-methyltransferase (MGMT), a tumor suppressor gene and expression level of BCL-2 a proto-oncogene protein that is frequently observed in bladder carcinoma and its recurrences. MATERIALS AND METHODS: We analyzed the methylation of MGMT in 80 tissue samples of patients suffering from bladder cancer and 80 urine samples of cancer-free individuals by MS-PCR. Additionally, BCL-2 protein expression level was analyzed on these 80 tissue samples by immunohistochemistry. RESULTS: 45 of patients had MGMT methylation, of which this hypermethylation does not have significant association with an increase in grade, but there was significant association in cases with recurrence tumors and metastasis tumors. Among patients with recurrence tumor, 92.5 patients showed MGMT hypermethylation; 66 of these showed BCL-2 overexpression. CONCLUSION: Our data indicate that MGMT hypermethylation and BCL-2 overexpression may have an intense role in superficial bladder cancer recurrences. © 2016 - IOS Press and the authors
    corecore