24 research outputs found

    Engineering Yarrowia lipolytica to Produce Glycoproteins Homogeneously Modified with the Universal Man3GlcNAc2 N-Glycan Core

    Get PDF
    Yarrowia lipolytica is a dimorphic yeast that efficiently secretes various heterologous proteins and is classified as “generally recognized as safe.” Therefore, it is an attractive protein production host. However, yeasts modify glycoproteins with non-human high mannose-type N-glycans. These structures reduce the protein half-life in vivo and can be immunogenic in man. Here, we describe how we genetically engineered N-glycan biosynthesis in Yarrowia lipolytica so that it produces Man3GlcNAc2 structures on its glycoproteins. We obtained unprecedented levels of homogeneity of this glycanstructure. This is the ideal starting point for building human-like sugars. Disruption of the ALG3 gene resulted in modification of proteins mainly with Man5GlcNAc2 and GlcMan5GlcNAc2 glycans, and to a lesser extent with Glc2Man5GlcNAc2 glycans. To avoid underoccupancy of glycosylation sites, we concomitantly overexpressed ALG6. We also explored several approaches to remove the terminal glucose residues, which hamper further humanization of N-glycosylation; overexpression of the heterodimeric Apergillus niger glucosidase II proved to be the most effective approach. Finally, we overexpressed an α-1,2-mannosidase to obtain Man3GlcNAc2 structures, which are substrates for the synthesis of complex-type glycans. The final Yarrowia lipolytica strain produces proteins glycosylated with the trimannosyl core N-glycan (Man3GlcNAc2), which is the common core of all complex-type N-glycans. All these glycans can be constructed on the obtained trimannosyl N-glycan using either in vivo or in vitro modification with the appropriate glycosyltransferases. The results demonstrate the high potential of Yarrowia lipolytica to be developed as an efficient expression system for the production of glycoproteins with humanized glycans

    Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    Get PDF
    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis

    Engineering complex-type N-glycosylation in Pichia pastoris using GlycoSwitch technology

    No full text
    Here we provide a protocol for engineering the N-glycosylation pathway of the yeast Pichia pastoris. The general strategy consists of the disruption of an endogenous glycosyltransferase gene (OCH1) and the stepwise introduction of heterologous glycosylation enzymes. Each engineering step results in the introduction of one glycosidase or glycosyltransferase activity into the Pichia endoplasmic reticulum or Golgi complex and consists of a number of stages: transformation with the appropriate GlycoSwitch vector, small-scale cultivation of a number of transformants, sugar analysis and heterologous protein expression analysis. If desired, the resulting clone can be further engineered by repeating the procedure with the next GlycoSwitch vector. Each engineering step takes similar to 3 weeks. The conversion of any wild-type Pichia strain into a strain that modifies its glycoproteins with Gal(2)GlcNAc(2)Man(3)GlcNAc(2) N-glycans requires the introduction of five GlycoSwitch vectors. Three examples of the full engineering procedure are provided to illustrate the results that can be expected

    In Vivo Synthesis of Mammalian-Like, Hybrid-Type N-Glycans in Pichia pastoris

    No full text
    The Pichia pastoris N-glycosylation pathway is only partially homologous to the pathway in human cells. In the Golgi apparatus, human cells synthesize complex oligosaccharides, whereas Pichia cells form mannose structures that can contain up to 40 mannose residues. This hypermannosylation of secreted glycoproteins hampers the downstream processing of heterologously expressed glycoproteins and leads to the production of protein-based therapeutic agents that are rapidly cleared from the blood because of the presence of terminal mannose residues. Here, we describe engineering of the P. pastoris N-glycosylation pathway to produce nonhyperglycosylated hybrid glycans. This was accomplished by inactivation of OCH1 and overexpression of an α-1,2-mannosidase retained in the endoplasmic reticulum and N-acetylglucosaminyltransferase I and β-1,4-galactosyltransferase retained in the Golgi apparatus. The engineered strain synthesized a nonsialylated hybrid-type N-linked oligosaccharide structure on its glycoproteins. The procedures which we developed allow glycan engineering of any P. pastoris expression strain and can yield up to 90% homogeneous protein-linked oligosaccharides
    corecore