3,417 research outputs found

    Boson-fermion mapping of collective fermion-pair algebras

    Get PDF
    We construct finite Dyson boson-fermion mappings of general collective algebras extended by single-fermion operators. A key element in the construction is the implementation of a similarity transformation which transforms boson-fermion images obtained directly from the supercoherent state method. In addition to the general construction, we give detailed applications to SO(2N), SU(l+1), SO(5), and SO(8) algebras.Comment: 22 pages, latex, no figure

    SDG fermion-pair algebraic SO(12) and Sp(10) models and their boson realizations

    Full text link
    It is shown how the boson mapping formalism may be applied as a useful many-body tool to solve a fermion problem. This is done in the context of generalized Ginocchio models for which we introduce S-, D-, and G-pairs of fermions and subsequently construct the sdg-boson realizations of the generalized Dyson type. The constructed SO(12) and Sp(10) fermion models are solved beyond the explicit symmetry limits. Phase transitions to rotational structures are obtained, also in situations where there is no underlying SU(3) symmetry.Comment: 25 LaTeX pages, 4 uuencoded postscript figures included, Preprint IFT/8/94 & STPHY-TH/94-

    Fermion-Boson Interactions and Quantum Algebras

    Get PDF
    Quantum Algebras (q-algebras) are used to describe interactions between fermions and bosons. Particularly, the concept of a su_q(2) dynamical symmetry is invoked in order to reproduce the ground state properties of systems of fermions and bosons interacting via schematic forces. The structure of the proposed su_q(2) Hamiltonians, and the meaning of the corresponding deformation parameters, are discussed.Comment: 20 pages, 10 figures. Physical Review C (in press

    Non-Hermitian oscillator Hamiltonian and su(1,1): a way towards generalizations

    Full text link
    The family of metric operators, constructed by Musumbu {\sl et al} (2007 {\sl J. Phys. A: Math. Theor.} {\bf 40} F75), for a harmonic oscillator Hamiltonian augmented by a non-Hermitian PT\cal PT-symmetric part, is re-examined in the light of an su(1,1) approach. An alternative derivation, only relying on properties of su(1,1) generators, is proposed. Being independent of the realization considered for the latter, it opens the way towards the construction of generalized non-Hermitian (not necessarily PT\cal PT-symmetric) oscillator Hamiltonians related by similarity to Hermitian ones. Some examples of them are reviewed.Comment: 11 pages, no figure; changes in title and in paragraphs 3 and 5; final published versio

    Analysis of the Strong Coupling Limit of the Richardson Hamiltonian using the Dyson Mapping

    Full text link
    The Richardson Hamiltonian describes superconducting correlations in a metallic nanograin. We do a perturbative analysis of this and related Hamiltonians, around the strong pairing limit, without having to invoke Bethe Ansatz solvability. Rather we make use of a boson expansion method known as the Dyson mapping. Thus we uncover a selection rule that facilitates both time-independent and time-dependent perturbation expansions. In principle the model we analise is realised in a very small metalic grain of a very regular shape. The results we obtain point to subtleties sometimes neglected when thinking of the superconducting state as a Bose-Einstein condensate. An appendix contains a general presentation of time-independent perturbation theory for operators with degenerate spectra, with recursive formulas for corrections of arbitrarily high orders.Comment: New final version accepted for publication in PRB. 17 two-column pages, no figure

    Moyal products -- a new perspective on quasi-hermitian quantum mechanics

    Full text link
    The rationale for introducing non-hermitian Hamiltonians and other observables is reviewed and open issues identified. We present a new approach based on Moyal products to compute the metric for quasi-hermitian systems. This approach is not only an efficient method of computation, but also suggests a new perspective on quasi-hermitian quantum mechanics which invites further exploration. In particular, we present some first results which link the Berry connection and curvature to non-perturbative properties and the metric.Comment: 14 pages. Submitted to J Phys A special issue on The Physics of Non-Hermitian Operator

    On Pseudo-Hermitian Hamiltonians and Their Hermitian Counterparts

    Full text link
    In the context of two particularly interesting non-Hermitian models in quantum mechanics we explore the relationship between the original Hamiltonian H and its Hermitian counterpart h, obtained from H by a similarity transformation, as pointed out by Mostafazadeh. In the first model, due to Swanson, h turns out to be just a scaled harmonic oscillator, which explains the form of its spectrum. However, the transformation is not unique, which also means that the observables of the original theory are not uniquely determined by H alone. The second model we consider is the original PT-invariant Hamiltonian, with potential V=igx^3. In this case the corresponding h, which we are only able to construct in perturbation theory, corresponds to a complicated velocity-dependent potential. We again explore the relationship between the canonical variables x and p and the observables X and P.Comment: 9 pages, no figure
    • …
    corecore