148 research outputs found

    Autophagy gene expression profiling identifies a defective microtubule-associated protein light chain 3A mutant in cancer.

    Get PDF
    The cellular stress response autophagy has been implicated in various diseases including neuro-degeneration and cancer. The role of autophagy in cancer is not clearly understood and both tumour promoting and tumour suppressive effects of autophagy have been reported, which complicates the design of therapeutic strategies based on targeting the autophagy pathway. Here, we have systematically analyzed gene expression data for 47 autophagy genes for deletions, amplifications and mutations in various cancers. We found that several cancer types have frequent autophagy gene amplifications, whereas deletions are more frequent in prostate adenocarcinomas. Other cancer types such as glioblastoma and thyroid carcinoma show very few alterations in any of the 47 autophagy genes. Overall, individual autophagy core genes are altered at low frequency in cancer, suggesting that cancer cells require functional autophagy. Some autophagy genes show frequent single base mutations, such as members of the ULK family of protein kinases. Furthermore, we found hotspot mutations in the arginine-rich stretch in MAP1LC3A resulting in reduced cleavage of MAP1LC3A by ATG4B both in vitro and in vivo, suggesting a functional implication of this gene mutation in cancer development

    Elucidating Surface Structure with Action Spectroscopy

    No full text
    Surface Action Spectroscopy, a vibrational spectroscopy method developed in recent years at the Fritz Haber Institute is employed for structure determination of clean and H2O-dosed (111) magnetite surfaces. Surface structural information is revealed by using the microscopic surface vibrations as a fingerprint of the surface structure. Such vibrations involve just the topmost atomic layers, and therefore the structural information is truly surface related. Our results strongly support the view that regular Fe3O4(111)/Pt(111) is terminated by the so-called Fetet1 termination, that the biphase termination of Fe3O4(111)/Pt(111) consists of FeO and Fe3O4(111) terminated areas, and we show that the method can differentiate between different water structures in H2O-derived adsorbate layers on Fe3O4(111)/Pt(111). With this, we conclude that the method is a capable new member in the set of techniques providing crucial information to elucidate surface structures. The method does not rely on translational symmetry and can therefore also be applied to systems which are not well ordered. Even an application to rough surfaces is possible

    Adatom Bonding Sites in a Nickel-Fe<sub>3</sub>O<sub>4</sub>(001) Single-Atom Model Catalyst and O<sub>2</sub> Reactivity Unveiled by Surface Action Spectroscopy with Infrared Free-Electron Laser Light

    Get PDF
    Single-atom (SA) catalysis presently receives much attention with its promise to decrease the cost of the active material while increasing the catalyst’s performance. However, key details such as the exact location of SA species and their stability are often unclear due to a lack of atomic level information. Here, we show how vibrational spectra measured with surface action spectroscopy (SAS) and density functional theory (DFT) simulations can differentiate between different adatom binding sites and determine the location of Ni and Au single atoms on Fe3O4. We reveal that Ni and Au adatoms selectively bind to surface oxygen ions which are octahedrally coordinated to Fe ions. In addition, we find that the Ni adatoms can activate O2 to superoxide in contrast to the bare surface and Ni in subsurface positions. Overall, we unveil the advantages of combining SAS and DFT for improving the understanding of single-atom catalysts

    Phosphatidylinositol 4-kinase IIβ negatively regulates invadopodia formation and suppresses an invasive cellular phenotype

    Get PDF
    The type II PI 4-kinases enzymes synthesise the lipid phosphatidylinositol 4-phosphate (PI(4)P) which has been detected at the Golgi complex and endosomal compartments, and which recruits clathrin adaptors. Despite common mechanistic similarities between the isoforms, the extent of their redundancy is unclear.We found that depletion of PI4KIIα and PI4KIIβ using siRNA led to actin remodelling. Depletion of PI4KIIβ also induced the formation of invadopodia containing membrane type I matrix metalloproteinase (MT1-MMP).Depletion of PI4KII isoforms also differentially affected TGN pools of PI(4)P and post-TGN traffic. PI4KIIβ depletion caused increased MT1-MMP trafficking to invasive structures at the plasma membrane and was accompanied by reduced colocalisation of MT1-MMP with membranes containing the endosomal markers Rab5 and Rab7, but increased localisation with the exocytic Rab8. Depletion of PI4KIIβ was sufficient to confer an aggressive invasive phenotype on minimally invasive HeLa and MCF-7 cell lines. Mining oncogenomic databases revealed that loss of the PI4K2B allele and underexpression of PI4KIIβ mRNA is associated with human cancers. This finding supports the cell data and suggests that PI4KIIβ may be a clinically significant suppressor of invasion. We propose that PI4KIIβ synthesises a pool of PI(4)P that maintains MT1-MMP traffic in the degradative pathway and suppresses the formation of invadopodia

    Adatom Bonding Sites in a Nickel-Fe<sub>3</sub>O<sub>4</sub>(001) Single-Atom Model Catalyst and O<sub>2</sub> Reactivity Unveiled by Surface Action Spectroscopy with Infrared Free-Electron Laser Light

    Get PDF
    Single-atom (SA) catalysis presently receives much attention with its promise to decrease the cost of the active material while increasing the catalyst’s performance. However, key details such as the exact location of SA species and their stability are often unclear due to a lack of atomic level information. Here, we show how vibrational spectra measured with surface action spectroscopy (SAS) and density functional theory (DFT) simulations can differentiate between different adatom binding sites and determine the location of Ni and Au single atoms on Fe3O4. We reveal that Ni and Au adatoms selectively bind to surface oxygen ions which are octahedrally coordinated to Fe ions. In addition, we find that the Ni adatoms can activate O2 to superoxide in contrast to the bare surface and Ni in subsurface positions. Overall, we unveil the advantages of combining SAS and DFT for improving the understanding of single-atom catalysts

    Cryogenic infrared spectroscopy provides mechanistic insight into the fragmentation of phospholipid silver adducts

    Get PDF
    Tandem mass spectrometry is arguably the most important analytical tool for structure elucidation of lipids and other metabolites. By fragmenting intact lipid ions, valuable structural information such as the lipid class and fatty acyl composition are readily obtainable. The information content of a fragment spectrum can often be increased by the addition of metal cations. In particular, the use of silver ions is deeply rooted in the history of lipidomics due to their propensity to coordinate both electron-rich heteroatoms and C = C bonds in aliphatic chains. Not surprisingly, coordination of silver ions was found to enable the distinction of sn-isomers in glycerolipids by inducing reproducible intensity differences in the fragment spectra, which could, however, not be rationalized. Here, we investigate the fragmentation behaviors of silver-adducted sn- and double bond glycerophospholipid isomers by probing fragment structures using cryogenic gas-phase infrared (IR) spectroscopy. Our results confirm that neutral headgroup loss from silver-adducted glycerophospholipids leads to dioxolane-type fragments generated by intramolecular cyclization. By combining high-resolution IR spectroscopy and computational modelling of silver-adducted fragments, we offer qualitative explanations for different fragmentation behaviors of glycerophospholipid isomers. Overall, the results demonstrate that gas-phase IR spectroscopy of fragment ions can significantly contribute to our understanding of lipid dissociation mechanisms and the influence of coordinating cations

    Unveiling Glycerolipid Fragmentation by Cryogenic Infrared Spectroscopy

    Get PDF
    Mass spectrometry is routinely employed for structure elucidation of molecules. Structural information can be retrieved from intact molecular ions by fragmentation; however, the interpretation of fragment spectra is often hampered by poor understanding of the underlying dissociation mechanisms. For example, neutral headgroup loss from protonated glycerolipids has been postulated to proceed via an intramolecular ring closure but the mechanism and resulting ring size have never been experimentally confirmed. Here we use cryogenic gas-phase infrared (IR) spectroscopy in combination with computational chemistry to unravel the structures of fragment ions and thereby shed light on elusive dissociation mechanisms. Using the example of glycerolipid fragmentation, we study the formation of protonated five-membered dioxolane and six-membered dioxane rings and show that dioxolane rings are predominant throughout different glycerolipid classes and fragmentation channels. For comparison, pure dioxolane and dioxane ions were generated from tailor-made dehydroxyl derivatives inspired by natural 1,2- and 1,3-diacylglycerols and subsequently interrogated using IR spectroscopy. Furthermore, the cyclic structure of an intermediate fragment occurring in the phosphatidylcholine fragmentation pathway was spectroscopically confirmed. Overall, the results contribute substantially to the understanding of glycerolipid fragmentation and showcase the value of vibrational ion spectroscopy to mechanistically elucidate crucial fragmentation pathways in lipidomics

    Surface oxygen Vacancies on Reduced Co<sub>3</sub>O<sub>4</sub>(100): Superoxide Formation and Ultra-Low-Temperature CO Oxidation

    Get PDF
    The activation of molecular oxygen is a fundamental step in almost all catalytic oxidation reactions.We have studied this topic and the role of surface vacancies for Co3O4(100) films with a synergistic combination of experimental and theoretical methods. We show that the as-prepared surface is Blayer terminated and that mild reduction produces oxygen single and double vacancies in this layer. Oxygen adsorption experiments clearly reveal different superoxide species below room temperature. The superoxide desorbs below ca. 120 K from a vacancy-free surface and is not active for CO oxidation while superoxide on a surface with oxygen vacancies is stable up to ca. 270 K and can oxidize CO already at the low temperature of 120 K. The vacancies are not refilled by oxygen from the superoxide, which makes them suitable for long-term operation. Our joint experimental/theoretical effort highlights the relevance of surface vacancies in catalytic oxidation reactions

    Surface oxygen Vacancies on Reduced Co<sub>3</sub>O<sub>4</sub>(100): Superoxide Formation and Ultra-Low-Temperature CO Oxidation

    Get PDF
    The activation of molecular oxygen is a fundamental step in almost all catalytic oxidation reactions.We have studied this topic and the role of surface vacancies for Co3O4(100) films with a synergistic combination of experimental and theoretical methods. We show that the as-prepared surface is Blayer terminated and that mild reduction produces oxygen single and double vacancies in this layer. Oxygen adsorption experiments clearly reveal different superoxide species below room temperature. The superoxide desorbs below ca. 120 K from a vacancy-free surface and is not active for CO oxidation while superoxide on a surface with oxygen vacancies is stable up to ca. 270 K and can oxidize CO already at the low temperature of 120 K. The vacancies are not refilled by oxygen from the superoxide, which makes them suitable for long-term operation. Our joint experimental/theoretical effort highlights the relevance of surface vacancies in catalytic oxidation reactions
    corecore