14 research outputs found
Bromination of double-walled carbon nanotubes
Double-walled carbon nanotubes (DWCNTs) synthesized by catalytic chemical vapor deposition (CCVD) have been functionalized by bromine vapor at room temperature. At least two different bromine species were detected in the product using X-ray photoelectron spectroscopy (XPS) and thermal gravimetric analysis. The primary form is negatively charged Br2 molecules exhibiting an intense resonance at ∼238 cm−1 in the Raman spectrum. The electron transfer from the nanotubes to the adsorbed molecules is detected from C 1s XPS and near-edge X-ray absorption fine structure spectra. The optical absorption spectra reveal that although the metallic nanotubes are more reactive to Br2, the outer semiconducting nanotubes also readily interact with Br2 adsorbates. The secondary bromine form is attributed to covalent C-Br bonding, and its possible sources are discussed in the light of quantum-chemical calculations. Analysis of the XPS, Raman, and optical absorption spectra of the Br-DWCNTs annealed at 100-170 °
C indicates preservation of a part of bromine molecules in samples that affects the electronic and vibration properties of nanotubes
Thermal Decomposition of Co-Doped Calcium Tartrate and Use of the Products for Catalytic Chemical Vapor Deposition Synthesis of Carbon Nanotubes.
Thermal decomposition of Co-doped calcium tartrate in an inert atmosphere or air was studied using thermogravimetric analysis and X-ray absorption fine structure (XAFS) spectroscopy. It was shown that the powder substance containing 4 at.% of cobalt completely decomposes within 650-730 °C, depending on the environment, and the formation of Co clusters does not proceed before 470 °C. The products of decomposition were characterized by transmission electron microscopy, XAFS, and X-ray photoelectron spectroscopy. Surfaceoxidized Co metal nanoparticles as large as ∼5.6 ( 1.2 nm were found to form in an inert atmosphere, while the annealing in air led to a wide distribution of diameters of the nanoparticles, with the largest nanoparticles (30-50 nm) mainly present as a Co3O4 phase. It was found that the former nanoparticles catalyze the growth of CNTs from alcohol while a reducing atmosphere is required for activation of the latter nanoparticles. We propose the scheme of formation of CaO-supported catalyst from Co-doped tartrate, depending on the thermal decomposition conditions
Chemiresistive Properties of Imprinted Fluorinated Graphene Films
The electrical conductivity of graphene materials is strongly sensitive to the surface adsorbates, which makes them an excellent platform for the development of gas sensor devices. Functionalization of the surface of graphene opens up the possibility of adjusting the sensor to a target molecule. Here, we investigated the sensor properties of fluorinated graphene films towards exposure to low concentrations of nitrogen dioxide NO2. The films were produced by liquid-phase exfoliation of fluorinated graphite samples with a composition of CF0.08, CF0.23, and CF0.33. Fluorination of graphite using a BrF3/Br2 mixture at room temperature resulted in the covalent attachment of fluorine to basal carbon atoms, which was confirmed by X-ray photoelectron and Raman spectroscopies. Depending on the fluorination degree, the graphite powders had a different dispersion ability in toluene, which affected an average lateral size and thickness of the flakes. The films obtained from fluorinated graphite CF0.33 showed the highest relative response ca. 43% towards 100 ppm NO2 and the best recovery ca. 37% at room temperature
Stability of fluorinated double-walled carbon nanotubes produced by different fluorination techniques
Double-walled carbon nanotubes (DWCNTs) have been fluorinated using (1) gaseous F2 at 200 °C, (2) a mixture of BrF3 and Br2 at room temperature, and (3) radio frequency CF4 plasma. The stability of the resultant samples was examined by thermogravimetric analysis in an inert atmosphere and by comparing the X-ray photoelectron spectra of the pristine samples with those after heating in vacuum at either 70 °C for 10 h or 120 °C for 20 h. The DWCNTs fluorinated by F2 showed the highest stability (the temperature of decomposition is around 396 °C), while the BrF3 and plasma-fluorinated DWCNTs lose fluorine from 150 °C. Prolonged annealing of the fluorinated DWCNTs in vacuum at a temperature below 150 °C also resulted in the defluorination of the samples. Fluorine atoms leave the DWCNT surface together with carbon atoms leading to defects in the graphitic network. These defects are likely to be centers for later functionalization by oxygen-containing groups during DWCNT storage