5 research outputs found

    Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting.

    Get PDF
    AbstractDeveloping biomaterial formulations with specific biochemical characteristics and physical properties suitable for bioprinting of 3D scaffolds is a pivotal challenge in tissue engineering. Therefore, the design of novel bioprintable formulations is a continuously evolving research field. In this work, the authors aim at expanding the library of biomaterial inks by blending two natural biopolymers: pectin and gelatin. Cytocompatible formulations are obtained by combining pectin and gelatin at different ratios and using (3‐glycidyloxypropyl)trimethoxysilane (GPTMS) as single crosslinking agent. It is shown that the developed formulations are all suitable for extrusion‐based 3D bioprinting. Self‐supporting scaffolds with a designed macroporosity and micropores in the bioprinted struts are successfully obtained by combining extrusion‐based bioprinting and freeze‐drying. The presence of gelatin in these formulations allows for the modulation of porosity, of water uptake and of scaffold stiffness in respect to pure pectin scaffolds. Results demonstrate that these new biomaterial formulations, processed with this specific approach, are promising candidates for the fabrication of tissue‐like scaffolds for tissue regeneration

    Orbital floor repair using patient specific osteoinductive implant made by stereolithography

    Get PDF
    The orbital floor (OF) is an anatomical location in the craniomaxillofacial (CMF) region known to be highly variable in shape and size. When fractured, implants commonly consisting of titanium meshes are customized by plying and crude hand-shaping. Nevertheless, more precise customized synthetic grafts are needed to meticulously reconstruct the patients’ OF anatomy with better fidelity. As alternative to titanium mesh implants dedicated to OF repair, we propose a flexible patient-specific implant (PSI) made by stereolithography (SLA), offering a high degree of control over its geometry and architecture. The PSI is made of biodegradable poly(trimethylene carbonate) (PTMC) loaded with 40 wt % of hydroxyapatite (called Osteo-PTMC). In this work, we developed a complete work-flow for the additive manufacturing of PSIs to be used to repair the fractured OF, which is clinically relevant for individualized medicine. This work-flow consists of (i) the surgical planning, (ii) the design of virtual PSIs and (iii) their fabrication by SLA, (iv) the monitoring and (v) the biological evaluation in a preclinical large-animal model. We have found that once implanted, titanium meshes resulted in fibrous tissue encapsulation, whereas Osteo-PMTC resulted in rapid neovascularization and bone morphogenesis, both ectopically and in the OF region, and without the need of additional biotherapeutics such as bone morphogenic proteins. Our study supports the hypothesis that the composite osteoinductive Osteo-PTMC brings advantages compared to standard titanium mesh, by stimulating bone neoformation in the OF defects. PSIs made of Osteo-PTMC represent a significant advancement for patients whereby the anatomical characteristics of the OF defect restrict the utilization of traditional hand-shaped titanium mesh

    Osteogenic differentiation of hBMSCs on porous photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite composites

    Get PDF
    Large bone defects are challenging to repair and novel implantable materials are needed to aid in their reconstruction. Research in the past years has proven the beneficial effect of porosity in an implant on osteogenesis in vivo. Building on this research we report here on porous composites based on photo-crosslinked poly(trimethylene carbonate) and nano-hydroxyapatite. These composites were prepared by a temperature induced phase separation of poly(trimethylene carbonate) macromers from solution in ethylene carbonate. By controlling the ethylene carbonate content in viscous dispersions of nano-hydroxyapatite in poly(trimethylene carbonate) macromer solutions, composites with 40 wt% nano-hydroxyapatite and 27 to 71% porosity were prepared. The surface structure of these porous composites was affected by their porosity and their topography became dominated by deep micro-pore channels with the majority of pore widths below 20 ”m and rougher surfaces on the nano-scale. The stiffness and toughness of the composites decreased with increasing porosity from 67 to 3.5 MPa and 263 to 2.2 N/mm2, respectively. In cell culture experiments, human bone marrow mesenchymal stem cells proliferated well on the composites irrespective of their porosity. Furthermore, differentiation of the cells was demonstrated by determination of ALP activity and calcium production. The extent of differentiation was affected by the porosity of the films, offering a reduced mechanical incentive for osteogenic differentiation at higher porosities with topographies likely offering a reduced possibility for cells to aggregate and to elongate into morphologies favourable for osteogenic differentiation. This ultimately resulted in a 3-fold reduction of calcium production of the differentiated cells on composites with 71% porosity compared to those on composites with 27% porosity
    corecore