3 research outputs found

    Detection of Large Vessel Occlusion Stroke in the Prehospital Setting: Electroencephalography as a Potential Triage Instrument

    No full text
    A reliable and fast instrument for prehospital detection of large vessel occlusion (LVO) stroke would be a game-changer in stroke care, because it would enable direct transportation of LVO stroke patients to the nearest comprehensive stroke center for endovascular treatment. This strategy would substantially improve treatment times and thus clinical outcomes of patients. Here, we outline our view on the requirements of an effective prehospital LVO detection method, namely: high diagnostic accuracy; fast application and interpretation; user-friendliness; compactness; and low costs. We argue that existing methods for prehospital LVO detection, including clinical scales, mobile stroke units and transcranial Doppler, do not fulfill all criteria, hindering broad implementation of these methods. Instead, electroencephalography may be suitable for prehospital LVO detection since in-hospital studies have shown that quantification of hypoxia-induced changes in the electroencephalography signal have good diagnostic accuracy for LVO stroke. Although performing electroencephalography measurements in the prehospital setting comes with challenges, solutions for fast and simple application of this method are available. Currently, the feasibility and diagnostic accuracy of electroencephalography in the prehospital setting are being investigated in clinical trials

    ELECTRA-STROKE: Electroencephalography controlled triage in the ambulance for acute ischemic stroke—Study protocol for a diagnostic trial

    No full text
    Background: Endovascular thrombectomy (EVT) is the standard treatment for large vessel occlusion stroke of the anterior circulation (LVO-a stroke). Approximately half of EVT-eligible patients are initially presented to hospitals that do not offer EVT. Subsequent inter-hospital transfer delays treatment, which negatively affects patients' prognosis. Prehospital identification of patients with LVO-a stroke would allow direct transportation of these patients to an EVT-capable center. Electroencephalography (EEG) may be suitable for this purpose because of its sensitivity to cerebral ischemia. The hypothesis of ELECTRA-STROKE is that dry electrode EEG is feasible for prehospital detection of LVO-a stroke. Methods: ELECTRA-STROKE is an investigator-initiated, diagnostic study. EEG recordings will be performed in patients with a suspected stroke in the ambulance. The primary endpoint is the diagnostic accuracy of the theta/alpha ratio for the diagnosis of LVO-a stroke, expressed by the area under the receiver operating characteristic (ROC) curve. EEG recordings will be performed in 386 patients. Discussion: If EEG can be used to identify LVO-a stroke patients with sufficiently high diagnostic accuracy, it may enable direct routing of these patients to an EVT-capable center, thereby reducing time-to-treatment and improving patient outcomes. Clinical trial registration: ClinicalTrials.gov, identifier: NCT03699397

    Data_Sheet_1_ELECTRA-STROKE: Electroencephalography controlled triage in the ambulance for acute ischemic stroke—Study protocol for a diagnostic trial.PDF

    No full text
    BackgroundEndovascular thrombectomy (EVT) is the standard treatment for large vessel occlusion stroke of the anterior circulation (LVO-a stroke). Approximately half of EVT-eligible patients are initially presented to hospitals that do not offer EVT. Subsequent inter-hospital transfer delays treatment, which negatively affects patients' prognosis. Prehospital identification of patients with LVO-a stroke would allow direct transportation of these patients to an EVT-capable center. Electroencephalography (EEG) may be suitable for this purpose because of its sensitivity to cerebral ischemia. The hypothesis of ELECTRA-STROKE is that dry electrode EEG is feasible for prehospital detection of LVO-a stroke.MethodsELECTRA-STROKE is an investigator-initiated, diagnostic study. EEG recordings will be performed in patients with a suspected stroke in the ambulance. The primary endpoint is the diagnostic accuracy of the theta/alpha ratio for the diagnosis of LVO-a stroke, expressed by the area under the receiver operating characteristic (ROC) curve. EEG recordings will be performed in 386 patients.DiscussionIf EEG can be used to identify LVO-a stroke patients with sufficiently high diagnostic accuracy, it may enable direct routing of these patients to an EVT-capable center, thereby reducing time-to-treatment and improving patient outcomes.Clinical trial registrationClinicalTrials.gov, identifier: NCT03699397.</p
    corecore