6 research outputs found

    Phase contrast MRI measurements of net cerebrospinal fluid flow through the cerebral aqueduct are confounded by respiration

    No full text
    BACKGROUND: Net cerebrospinal fluid (CSF) flow through the cerebral aqueduct may serve as a marker of CSF production in the lateral ventricles, and changes that occur with aging and in disease. PURPOSE: To investigate the confounding influence of the respiratory cycle on net CSF flow and stroke volume measurements. STUDY TYPE: Cross-sectional study. SUBJECTS: Twelve young, healthy subjects (seven male, age range 19-39 years, average age 28.3 years). FIELD STRENGTH/SEQUENCE: Phase contrast MRI (PC-MRI) measurements were performed at 7T, with and without respiratory gating on expiration and on inspiration. All measurements were repeated. ASSESSMENT: Net CSF flow and stroke volume in the aqueduct, over the cardiac cycle, was determined. STATISTICAL TESTS: Repeatability was determined using the intraclass correlation coefficient (ICC) and linear regression analysis between the repeated measurements. Repeated measures analysis of variance (ANOVA) was performed to compare the measurements during inspiration/expiration/no gating. Linear regression analysis was performed between the net CSF flow difference (inspiration minus expiration) and stroke volume. RESULTS: Net CSF flow (average ± standard deviation) was 0.64 ± 0.32 mL/min (caudal) during expiration, 0.12 ± 0.49 mL/min (cranial) during inspiration, and 0.31 ± 0.18 mL/min (caudal) without respiratory gating. Respiratory gating did not affect stroke volume measurements (41 ± 18, 42 ± 19, 42 ± 19 μL/cycle for expiration, no respiratory gating and inspiration, respectively). Repeatability was best during inspiration (ICC = 0.88/0.56/-0.31 for gating on inspiration/expiration/no gating). A positive association was found between average stroke volume and net flow difference between inspiration and expiration (R = 0.678/0.605, P = 0.015/0.037 for the first/second repeated measurement). DATA CONCLUSION: Measured net CSF flow is confounded by respiration effects. Therefore, net CSF flow measurements with PC-MRI cannot in isolation be directly linked to CSF production. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018

    Vascular reactivity in small cerebral perforating arteries with 7 T phase contrast MRI – A proof of concept study

    No full text
    Existing cerebrovascular reactivity (CVR) techniques assess flow reactivity in either the largest cerebral vessels or at the level of the parenchyma. We examined the ability of 2D phase contrast MRI at 7 T to measure CVR in small cerebral perforating arteries. Blood flow velocity in perforators was measured in 10 healthy volunteers (mean age 26 years) using a 7 T MR scanner, using phase contrast acquisitions in the semioval center (CSO), the basal ganglia (BG) and the middle cerebral artery (MCA). Changes in flow velocity in response to a hypercapnic breathing challenge were assessed, and expressed as the percentual increase of flow velocity as a function of the increase in end tidal partial pressure of CO2. The hypercapnic challenge increased (fit ± standard error) flow velocity by 0.7 ± 0.3%/mmHg in the CSO (P < 0.01). Moreover, the number of detected perforators (mean [range]) increased from 63 [27–88] to 108 [61–178] (P < 0.001). In the BG, the hypercapnic challenge increased flow velocity by 1.6 ± 0.5%/mmHg (P < 0.001), and the number of detected perforators increased from 48 [24–66] to 63 [32–91] (P < 0.01). The flow in the MCA increased by 5.2 ± 1.4%/mmHg (P < 0.01). Small vessel specific reactivity can now be measured in perforators of the CSO and BG, using 2D phase contrast at 7 T

    The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial

    Get PDF
    Sodium-glucose cotransporter 2 inhibitors (SGLT2i) improve hard renal outcomes in type 2 diabetes. This is possibly explained by the fact that SGLT2i normalize the measured glomerular filtration rate (mGFR) by increasing renal vascular resistance, as was shown in young people with type 1 diabetes and glomerular hyperfiltration. Therefore, we compared the renal hemodynamic effects of dapagliflozin with gliclazide in type 2 diabetes. The mGFR and effective renal plasma flow were assessed using inulin and para-aminohippurate clearances in the fasted state, during clamped euglycemia (5 mmol/L) and during clamped hyperglycemia (15 mmol/L). Filtration fraction and renal vascular resistance were calculated. Additionally, factors known to modulate renal hemodynamics were measured. In 44 people with type 2 diabetes on metformin monotherapy (Hemoglobin A1c 7.4%, mGFR 113 mL/min), dapagliflozin versus gliclazide reduced mGFR by 5, 10, and 12 mL/min in the consecutive phases while both agents similarly improved Hemoglobin A1c (-0.48% vs -0.65%). Dapagliflozin also reduced filtration fraction without increasing renal vascular resistance, and increased urinary adenosine and prostaglandin concentrations. Gliclazide did not consistently alter renal hemodynamic parameters. Thus, beyond glucose control, SGLT2i reduce mGFR and filtration fraction in type 2 diabetes. The fact that renal vascular resistance was not increased by dapagliflozin suggests that this is due to post-glomerular vasodilation rather than pre-glomerular vasoconstriction
    corecore