7 research outputs found

    ITO-free silicon-integrated perovskite electrochemical cell for light-emission and light-detection

    Get PDF
    Halide perovskite light-emitting electrochemical cells are a novel type of the perovskite optoelectronic devices that differs from the perovskite light-emitting diodes by a simple monolayered architecture. Here, we develop a perovskite electrochemical cell both for light emission and detection, where the active layer consists of a composite material made of halide perovskite microcrystals, polymer support matrix, and added mobile ions. The perovskite electrochemical cell of CsPbBr3:PEO:LiTFSI composition, emitting light at the wavelength of 523 nm, yields the luminance more than 7000 cd/m2 and electroluminescence efficiency of 1.3×105 lm/W. The device fabricated on a silicon substrate with transparent single-walled carbon nanotube film as a top contact exhibits 40% lower Joule heating compared to the perovskite optoelectronic devices fabricated on conventional ITO/glass substrates. Moreover, the device operates as a photodetector with a sensitivity up to 0.75 A/W, specific detectivity of 8.56×1011 Jones, and linear dynamic range of 48 dB. The technological potential of such a device is proven by demonstration of 24-pixel indicator display as well as by successful device miniaturization by creation of electroluminescent images with the smallest features less than 50 μm

    Broadband Antireflection with Halide Perovskite Metasurfaces

    Get PDF
    Meta-optics based on optically resonant dielectric nanostructures is a rapidly developing research field with many potential applications. Halide perovskite metasurfaces have emerged recently as a novel platform for meta-optics, and they offer unique opportunities for control of light in optoelectronic devices. Here, the generalized Kerker conditions are employed to overlap electric and magnetic Mie resonances in each meta-atom of MAPbBr3 perovskite metasurface, and broadband suppression of reflection down to 4% is demonstrated. Furthermore, it is revealed that metasurface nanostructuring is also beneficial for the enhancement of photoluminescence. These results may be useful for applications of nanostructured halide perovskites in photovoltaics and semi-transparent multifunctional metadevices where reflection reduction is important for their high efficiency.This work was supported by the Russian Science Foundation (project no19-73-30023), the Australian Research Council (grant DP200101168), andthe Strategic Fund of the Australian National Universit

    Hybrid Perovskite Terahertz Photoconductive Antenna

    No full text
    Hybrid organic–inorganic perovskites, while well examined for photovoltaic applications, remain almost completely unexplored in the terahertz (THz) range. These low-cost hybrid materials are extremely attractive for THz applications because their optoelectronic properties can be chemically engineered with relative ease. Here, we experimentally demonstrate the first attempt to apply solution-processed polycrystalline films of hybrid perovskites for the development of photoconductive terahertz emitters. By using the widely studied methylammonium-based perovskites MAPbI3 and MAPbBr3, we fabricate and characterize large-aperture photoconductive antennas. The work presented here examines polycrystalline perovskite films excited both above and below the bandgap, as well as the scaling of THz emission with the applied bias field and the optical excitation fluence. The combination of ultrafast time-resolved spectroscopy and terahertz emission experiments allows us to determine the still-debated room temperature carrier lifetime and mobility of charge carriers in halide perovskites using an alternative noninvasive method. Our results demonstrate the applicability of hybrid perovskites for the development of scalable THz photoconductive devices, making these materials competitive with conventional semiconductors for THz emission
    corecore