116 research outputs found

    Healing of Osteochondral Defects via Endochondral Ossification in an Ovine Model.

    Get PDF
    OBJECTIVE: The objective of this study was to describe the mechanism of healing of osteochondral defects of the distal femur in the sheep, a commonly used translational model. Information on the healing mechanism be useful to inform the design of tissue engineering devices for joint surface defect repair. DESIGN: A retrospective study was conducted examining 7-mm diameter osteochondral defects made in the distal medial femoral condyle of 40 adult female sheep, comprising control animals from 3 separate structures. The healing of the defects was studied at post mortem at up to 26 weeks. RESULTS: Osteochondral defects of the distal femur of the sheep heal through endochondral ossification as evidenced by chondrocyte hypertrophy and type X collagen expression. Neocartilage is first formed adjacent to damaged cartilage and then streams over the damaged underlying bone before filling the defect from the base upward. No intramembranous ossification or isolated mesenchymal stem cell aggregates were detected in the healing tissue. No osseous hypertrophy was detected in the defects. CONCLUSIONS: Osteochondral defects of the medial femoral condyle of the sheep heal via endochondral ossification, with neocartilage first appearing adjacent to damaged cartilage. Unlike the mechanism of healing in fracture repair, neocartilage is eventually formed directly onto damaged bone. There was most variability between animals between 8 and 12 weeks postsurgery. These results should be considered when designing devices to promote defect healing

    The Stability study: a protocol for a multicenter randomized clinical trial comparing anterior cruciate ligament reconstruction with and without Lateral Extra-articular Tenodesis in individuals who are at high risk of graft failure

    Get PDF
    BackgroundThe purpose of anterior cruciate ligament reconstruction (ACLR) is to restore stability to the knee. Persistent rotational laxity following ACLR has been correlated with poor outcome and graft failure. We hypothesize that anterolateral complex reconstruction by way of a Modified Lemaire Lateral Extra-articular Tenodesis (LET) in combination with single bundle ACLR would reduce the risk of persistent rotatory laxity in young individuals who are deemed as being at high risk of failure. We will conduct a pragmatic, multicenter, randomized clinical trial comparing standard single bundle hamstring ACLR with combined ACLR and LET.MethodsSix-hundred patients (300 per group) aged 25years or less with an ACL deficient knee that meet two of the following three criteria will be included: 1) Grade 2 pivot shift or greater; 2) Returning to high risk cutting or pivoting sports; 3) Generalized ligamentous laxity. Participants will be seen at 3-months, 6-months, 12-months and 24-months post-operatively. The primary outcome measure is graft failure requiring revision ACLR or symptomatic instability associated with a positive asymmetric pivot shift indicating persistent rotational laxity. Patients will complete secondary outcome measures at each follow-up visit including patient-reported outcome measures, functional and biomechanical testing, and magnetic resonance imaging.DiscussionThis protocol is the first adequately powered randomized clinical trial investigating the effects of augmenting ACLR with an LET in patients at high-risk of graft failure. The successful completion of this trial has the potential to change surgical practice and provide evidence for the role of the LET in ACLR.Trial registrationThe trial is registered at ClinicalTrials.gov: NCT02018354, 23-12-2013

    A pilot hole does not reduce the strains or risk of fracture to the lateral cortex during and following a medial opening wedge high tibial osteotomy in cadaveric specimens

    Get PDF
    © 2018 Bujnowski et al. Aim: It has been suggested that the use of a pilot-hole may reduce the risk of fracture to the lateral cortex. Therefore the purpose of this study was to determine the effect of a pilot hole on the strains and occurrence of fractures at the lateral cortex during the opening of a high tibial osteotomy (HTO) and post-surgery loading. Materials and Methods: A total of 14 cadaveric tibias were randomized to either a pilot hole (n = 7) or a no-hole (n = 7) condition. Lateral cortex strains were measured while the osteotomy was opened 9 mm and secured in place with a locking plate. The tibias were then subjected to an initial 800 N load that increased by 200 N every 5000 cycles, until failure or a maximum load of 2500 N. Results: There was no significant difference in the strains on the lateral cortex during HTO opening between the pilot hole and no-hole conditions. Similarly, the lateral cortex and fixation plate strains were not significantly different during cyclic loading between the two conditions. Using a pilot hole did not significantly decrease the strains experienced at the lateral cortex, nor did it reduce the risk of fracture. Conclusions: The nonsignificant differences found here most likely occurred because the pilot hole merely translated the stress concentration laterally to a parallel point on the surface of the hole

    Lateral Compartment Contact Pressures Do Not Increase After Lateral Extra-articular Tenodesis and Subsequent Subtotal Meniscectomy

    Get PDF
    © The Author(s) 2019. Background: Modified Lemaire lateral extra-articular tenodesis (LET) has been proposed as a method of addressing persistent anterolateral rotatory laxity after anterior cruciate ligament (ACL) reconstruction (ACLR). However, concerns remain regarding the potential for increasing lateral compartment contact pressures. Purpose: To investigate changes in tibiofemoral joint contact pressures after isolated ACLR and combined ACLR plus LET with varying states of a lateral meniscal injury. Study Design: Controlled laboratory study. Methods: Eight fresh-frozen cadaveric knee specimens (mean age, 60.0 ± 3.4 years) were utilized for this study, with specimens potted and loaded on a materials testing machine. A pressure sensor was inserted into the lateral compartment of the tibiofemoral joint, and specimens were loaded at 0°, 30°, 60°, and 90° of flexion in the following states: (1) baseline (ACL- and anterolateral ligament–deficient), (2) ACLR, (3) ACLR with LET, (4) partial meniscectomy (removal of 50% of the posterior third of the lateral meniscus), (5) subtotal meniscectomy (removal of 100% of the posterior third of the lateral meniscus), and (6) LET release (LETR). Mean contact pressure, peak pressure, and center of pressure were analyzed using 1-way repeated-measures analysis of variance. Results: Across all flexion angles, there was no statistically significant increase in the mean contact pressure or peak pressure after ACLR plus LET with and without lateral meniscectomy compared with isolated ACLR. There was a significant reduction in the mean contact pressure, from baseline, after subtotal meniscectomy (69.72% ± 19.27% baseline; P =.04) and LETR (65.81% ± 13.40% baseline; P =.003) at 0° and after the addition of LET to ACLR at 30° (61.20% ± 23.08% baseline; P =.031). The center of pressure was observed to be more anterior after partial (0°, 30°) and subtotal (0°, 60°) meniscectomy and LETR (0°, 30°, 60°). Conclusion: Under the loading conditions of this study, LET did not significantly alter lateral compartment contact pressures when performed in conjunction with ACLR in the setting of an intact or posterior horn–deficient lateral meniscus. Clinical Relevance: This study should provide surgeons with the confidence that it is safe to perform LET in this manner in conjunction with ACLR without altering lateral compartment pressures, regardless of the status of the lateral meniscus

    Contributions of the anterolateral complex and the anterolateral ligament to rotatory knee stability in the setting of ACL Injury: a roundtable discussion

    Get PDF
    Persistent rotatory knee laxity is increasingly recognized as a common finding after anterior cruciate ligament (ACL) reconstruction. While the reasons behind rotator knee laxity are multifactorial, the impact of the anterolateral knee structures is significant. As such, substantial focus has been directed toward better understanding these structures, including their anatomy, biomechanics, in vivo function, injury patterns, and the ideal procedures with which to address any rotatory knee laxity that results from damage to these structures. However, the complexity of lateral knee anatomy, varying dissection techniques, differing specimen preparation methods, inconsistent sectioning techniques in biomechanical studies, and confusing terminology have led to discrepancies in published studies on the topic. Furthermore, anatomical and functional descriptions have varied widely. As such, we have assembled a panel of expert surgeons and scientists to discuss the roles of the anterolateral structures in rotatory knee laxity, the healing potential of these structures, the most appropriate procedures to address rotatory knee laxity, and the indications for these procedures. In this round table discussion, KSSTA Editor-in-Chief Professor JĂłn Karlsson poses a variety of relevant and timely questions, and experts from around the world provide answers based on their personal experiences, scientific study, and interpretations of the literature. Level of evidence V

    Closing-Wedge Posterior Tibial Slope-Reducing Osteotomy in Complex Revision ACL Reconstruction

    Get PDF
    Background: A posterior tibial slope (PTS) >12° has been shown to correlate with failure of anterior cruciate ligament (ACL) reconstruction (ACLR). PTS-reducing osteotomy has been described to correct the PTS in patients with a deficient ACL, mostly after failure of primary ACLR. Purpose: To report radiologic indices, clinical outcomes, and postoperative complications after PTS-reducing osteotomy performed concurrently with revision ACLR (R-ACLR). Study design: Case series; Level of evidence, 4. Methods: A review of medical records at 3 institutions was performed of patients who had undergone PTS-reducing osteotomy concurrently with R-ACLR between August 2010 and October 2020. Radiologic parameters recorded included the PTS, patellar height according to the Caton-Deschamps Index (CDI), and anterior tibial translation (ATT). Patient-reported outcomes (International Knee Documentation Committee [IKDC] and Knee injury and Osteoarthritis Outcome Score [KOOS]), reoperations, and complications were evaluated. Results: Included were 23 patients with a mean follow-up of 26.7 months (range, 6-84 months; median, 22.5 months). Statistically significant differences from preoperative to postoperative values were found in PTS (median [range], 14.0° [12°-18°] vs 4.0° [0°-15°], respectively; P < .001), CDI (median, 1.00 vs 1.10, respectively; P = .04) and ATT (median, 8.5 vs 3.6 mm, respectively; P = .001). At the final follow-up, the IKDC score was 52.4 ± 19.2 and the KOOS subscale scores were 81.5 ± 9.5 (Pain), 74 ± 21.6 (Symptoms), 88.5 ± 8 (Activities of Daily Living); 52.5 ± 21.6 (Sport and Recreation), and 48.8 ± 15.8 (Quality of Life). A traumatic ACL graft failure occurred in 2 patients (8.7%). Reoperations were necessary for 6 patients (26.1%) because of symptomatic hardware, and atraumatic recurrent knee instability was diagnosed in 1 patient (4.3%). Conclusion: Tibial slope-reducing osteotomy resulted in a significant decrease of ATT and can be considered in patients with a preoperative PTS ≥12° and ≥1 ACLR failure. In highly complex patients with multiple prior surgeries, the authors found a reasonably low graft failure rate (8.7%) when utilizing PTS-reducing osteotomy. Surgeons must be aware of potential complications in patients with multiple previous failed ACLRs

    Osteochondral tissue engineering using a biphasic collagen/GAG scaffold containing rhFGF18 or BMP-7 in an ovine model.

    Get PDF
    BACKGROUND: The aim of this study was to investigate the effect of combining rhFGF18 or BMP-7 with a biphasic collagen/GAG osteochondral scaffold (Chondromimetic) on the repair of osteochondral defects in sheep. METHODS: Osteochondral defects (5.8x6mm) were created in the medial femoral condyle (MFC) and the lateral trochlea sulcus (LTS) of the stifle joint of 24 female sheep. Sheep were randomly assigned to four groups (n = 6); 1) empty defect, 2) scaffold only, 3) scaffold + rhFGF-18 (30 μg) and 4) scaffold + BMP-7 (100 μg). At 6 months the defects underwent non-destructive mechanical testing, gross assessment of repair tissue (ICRS score) and histological analysis (Modified O'Driscoll score). RESULTS: ICRS repair score: Defects treated with scaffold + rhFGF18 (mean 9.83, 95% CI 8.43-11.23) and scaffold + BMP-7 (10, 9.06-10.94) in the MFC had significantly improved ICRS scores compared to empty defects (4.2, 0-8.80) (p = 0.002). Mechanical properties: BMP-7 treated defects (mean 64.35, 95% CI 56.88-71.82) were significantly less stiff than both the rhFGF18 (mean 84.1, 95% CI 76.8-91.4) and empty defects in the LTS, compared to both contralateral limb (p = 0.003), and the perilesional articular cartilage (p < 0.001). HISTOLOGY: A statistically significant improvement in the modified O'Driscoll score was observed in the rhFGF18 treated group (mean 16.83, 95% CI 13.65-20.61) compared to the empty defects (mean 9, 95% CI 4.88-13.12) (p = 0.039) in the MFC. Excellent tissue fill, lateral integration and proteoglycan staining was observed. Only the rhFGF18 defects showed pericellular type VI collagen staining with positive type II collagen and reduced positive type I collagen staining. The majority of defects in the control and BMP-7 groups demonstrated fibrocartilagenous repair tissue. CONCLUSION: Statistically significant improvements in gross repair, mechanical properties and histological score were found over empty defects when Chondromimetic was combined with rhFGF18. These results suggest that rhFGF18 may play a significant role in articular cartilage repair applications.This is the final published version. It is published by Springer in the Journal of Experimental Orthopaedics here: http://www.jeo-esska.com/content/1/1/13

    Enhancing Biological and Biomechanical Fixation of Osteochondral Scaffold: A Grand Challenge

    Get PDF
    Osteoarthritis (OA) is a degenerative joint disease, typified by degradation of cartilage and changes in the subchondral bone, resulting in pain, stiffness and reduced mobility. Current surgical treatments often fail to regenerate hyaline cartilage and result in the formation of fibrocartilage. Tissue engineering approaches have emerged for the repair of cartilage defects and damages to the subchondral bones in the early stage of OA and have shown potential in restoring the joint's function. In this approach, the use of three-dimensional scaffolds (with or without cells) provides support for tissue growth. Commercially available osteochondral (OC) scaffolds have been studied in OA patients for repair and regeneration of OC defects. However, some controversial results are often reported from both clinical trials and animal studies. The objective of this chapter is to report the scaffolds clinical requirements and performance of the currently available OC scaffolds that have been investigated both in animal studies and in clinical trials. The findings have demonstrated the importance of biological and biomechanical fixation of the OC scaffolds in achieving good cartilage fill and improved hyaline cartilage formation. It is concluded that improving cartilage fill, enhancing its integration with host tissues and achieving a strong and stable subchondral bone support for overlying cartilage are still grand challenges for the early treatment of OA

    An ex vivo continuous passive motion model in a porcine knee for assessing primary stability of cell-free collagen gel plugs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Primary stability of cartilage repair constructs is of the utmost importance in the clinical setting but few continuous passive motion (CPM) models are available. Our study aimed to establish a novel ex vivo CPM animal model and to evaluate the required motion cycles for testing the mechanical properties of a new cell-free collagen type I gel plug (CaReS<sup>®</sup>-1S).</p> <p>Methods</p> <p>A novel ex vivo CPM device was developed. Full-thickness cartilage defects (11 mm diameter by 6 mm deep) were created on the medial femoral condyle of porcine knee specimens. CaReS<sup>®</sup>-1S was implanted in 16 animals and each knee underwent continuous passive motion. After 0, 2000, 4000, 6000, and 8000 motions, standardized digital pictures of the grafts were taken, focusing on the worn surfaces. The percentage of worn surface on the total CaReS<sup>®</sup>-1S surface was evaluated with image processing software.</p> <p>Results</p> <p>Significant differences in the worn surface were recorded between 0 and 2000 motion cycles (p < 0.0001). After 2000 motion cycles, there was no significant difference. No total delamination of CaReS<sup>®</sup>-1S with an empty defect site was recorded.</p> <p>Conclusion</p> <p>The ex vivo CPM animal model is appropriate in investigating CaReS<sup>®</sup>-1S durability under continuous passive motion. 2000 motion cycles appear adequate to assess the primary stability of type I collagen gels used to repair focal chondral defects.</p

    Treatment After Anterior Cruciate Ligament Injury: Panther Symposium ACL Treatment Consensus Group

    Get PDF
    © The Author(s) 2020. Treatment strategies for anterior cruciate ligament (ACL) injuries continue to evolve. Evidence supporting best-practice guidelines for the management of ACL injury is to a large extent based on studies with low-level evidence. An international consensus group of experts was convened to collaboratively advance toward consensus opinions regarding the best available evidence on operative versus nonoperative treatment for ACL injury. The purpose of this study was to report the consensus statements on operative versus nonoperative treatment of ACL injuries developed at the ACL Consensus Meeting Panther Symposium 2019. There were 66 international experts on the management of ACL injuries, representing 18 countries, who were convened and participated in a process based on the Delphi method of achieving consensus. Proposed consensus statements were drafted by the scientific organizing committee and session chairs for the 3 working groups. Panel participants reviewed preliminary statements before the meeting and provided initial agreement and comments on the statement via online survey. During the meeting, discussion and debate occurred for each statement, after which a final vote was then held. Ultimately, 80% agreement was defined a priori as consensus. A total of 11 of 13 statements on operative versus nonoperative treatment of ACL injury reached consensus during the symposium. Overall, 9 statements achieved unanimous support, 2 reached strong consensus, 1 did not achieve consensus, and 1 was removed because of redundancy in the information provided. In highly active patients engaged in jumping, cutting, and pivoting sports, early anatomic ACL reconstruction is recommended because of the high risk of secondary meniscal and cartilage injuries with delayed surgery, although a period of progressive rehabilitation to resolve impairments and improve neuromuscular function is recommended. For patients who seek to return to straight-plane activities, nonoperative treatment with structured, progressive rehabilitation is an acceptable treatment option. However, with persistent functional instability, or when episodes of giving way occur, anatomic ACL reconstruction is indicated. The consensus statements derived from international leaders in the field will assist clinicians in deciding between operative and nonoperative treatment with patients after an ACL injury
    • …
    corecore